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Abstract

Bagging forms a committee of classifiers by bootstrap aggregation of training sets from a pool of training
data. A simple alternative to bagging is to partition the data into disjoint subsets. Experiments with
decision tree and neural network classifiers on various datasets show that, given the same size partitions
and bags, disjoint partitions result in performance equivalent to, or better than, bootstrap aggregates
(bags). Many applications (e.g., protein structure prediction) involve use of datasets that are too large
to handle in the memory of the typical computer. Hence, bagging with samples the size of the data is
impractical. Our results indicate that, in such applications, the simple approach of creating a committee
of n classifiers from disjoint partitions each of size1/n (which will be memory resident during learning)
in a distributed way results in a classifier which has a bagging-like performance gain. The use of
distributed disjoint partitions in learning is significantly less complex and faster than bagging.

1. Introduction
Many data mining applications use data sets that are too large to be handled in the memory of the typical
computer Shafer et al. [1996], Darlington et al. [1997], Chan and Stolfo [1993], Provost et al. [1999],
Moore and Lee [1998], Bowyer et al. [2000], Hall et al. [2000, 1999], Oates and Jensen [1998]. One
possible approach is to sub-sample the data in some manner Provost et al. [1999], Breiman [1999].
However, it can be difficult a priori to know how to sub-sample so that accuracy is not affected. Also,
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recent work by Perlich et al. [2002] has shown that classifier accuracy tends to increase with more
training data even for large data sets. Another possible approach is to partition the original data into
smaller subsets, and form a committee of classifiers Chan and Stolfo [1993], Provost and Hennessy
[1996]. One advantage of this approach is that the partition size can simply be set at whatever amount
of the original data can be conveniently handled on the available system. Another advantage is that the
committee potentially has better accuracy than a single classifier constructed on all the data.

In its typical form, bagging involves random sampling with replacement from the original pool of
training data to create “bags” of data for a committee of thirty to one hundred classifiers. Bagging has
been shown to almost always result in equal or (usually) improved performance over a single classifier
created on all of the original data Breiman [1996], Quinlan [1996], Bauer and Kohavi [1999]. The
success of bagging suggests that it might be a useful approach to create accurate classifiers for large data
sets. We definelarge data sets as those which do not fit in the memory of a typical scientific computer.
However, experience with bagging has primarily been in the context ofsmalldata sets. If the original
data set will not fit in the main memory of the typical computer, then none of the thirty or more bags
one might create will fit. This raises the question of which particulars of the bagging approach are
essential in the context of large data sets. We consider the question of whether simple partitioning of
the training data into tractable-size subsets can produce an ensemble of classifiers with accuracy equal
to that of a single classifier built on all of the data. In this work, we show that simple partitioning of a
large original data set into disjoint subsets results in better performance than creating bags of the same
size. In other words, it is the committee of classifiers that is essential and bootstrap aggregation to form
the individual classifiers is not essential. Further, it is straightforward to create one or several different
disjoint partitions of data and the process is rapid.

Classifiers can be built in a distributed way on disjoint partitions. Each ofn classifiers can be learned
on a separate processor in parallel. Further, for large enough partitions (bags) the performance of the
resulting classifier will meet or exceed that of a classifier built on all the data. The time required to build
an ensemble ofn classifiers which are learned independently onn processors without communication
will be the longest time required to learn a single classifier on a processor.

In Section 2, we discuss related work. In Section 3, we describe our experimental setup for small data
sets from the UC Irvine repository Blake and Merz [1998], as well as the setup for experiments with a
mid-size and large data set from our own research. We also describe the base classifiers and computing
systems used in the experiments. Section 4 contains the experimental results. Finally, Section 5 contains
a discussion of the results and conclusions that can be drawn.

2. Literature Review
Bagging, Breiman [1996], has been shown to improve classifier accuracy. Bagging basically combines
models learned on different samplings of a given dataset. According to Breiman, bagging exploits the
instability in the classifiers, since perturbing the training set produces different classifiers using the
same learning algorithm. Quinlan [1996] experimented with bagging on various datasets and found that
bagging substantially improved accuracy. However, the experiments were performed onsmalldatasets,
the largest one being 20,000 examples.

Domingos [1997] empirically tested two alternative theories supporting bagging: (1) bagging works
because it approximates Bayesian model averaging or (2) it works because it shifts the priors to a more
appropriate region in the decision space. The empirical results showed that bagging worked possibly

2



because it counter-acts the inherent simplicity bias of the decision trees. That is, with M different bags,
M different classifiers are learned, and together their output is more complex than that of the single
learner.

In Street and Kim [2001], an ensemble of classifiers are built from training data which is treated as a
stream. Each classifier is trained on a fixed amount of data from the stream. The size of the ensemble
is fixed at 25 classifiers. Classifiers “compete” for entry into the ensemble based on their accuracy and
diversity. This approach allows an ensemble classifier to be built from an unlimited amount of training
data. It also facilitates building an ensemble classifier which might be built on data with temporal
dependencies, where the concept to be modeled may vary over time. In their experiments, the ensemble
classifier was usually slightly less accurate than a classifier which was built with as much data as the
current ensemble had used. In our work larger training sets are used.

In Breiman [1999], classifiers were built on small randomly chosen subsets of an overall training set.
This approach can deal with extremely large training datasets, but requires many classifiers because it
uses somewhere around 800 examples per classifier in the discussed experiments. Also, the process of
continually selecting small subsets can be computationally problematic for very large datasets. This is
different from the approach we are looking at, in which the number of training samples may be as large
as main memory space available.

Chan and Stolfo [1995] compared arbiter and combiner strategies by applying a learning algorithm to
disjoint subsets of data. An arbiter scheme uses a learned representation of which classifier to choose
given an example and a combiner takes classifier outputs of a test example as input and produces a
classification. The described experiments showed that the arbiter strategy can sometimes better sustain
the accuracy compared to the classifier learned on the entire data set. The combiner strategy showed
a drop in accuracy with the increase in the number of subsets, which can be attributed to the lack of
information content in the small subsets. However, a few cases resulted in an improvement in accuracy.
We are interested in disjoint subsets of larger original data sets than in Chan and Stolfo [1995], and so
there is reason to expect that accuracy can be maintained.

Chan and Stolfo [1996] relaxed their definition of strict disjoint subsets by allowing a small amount
of overlap across the subsets. On the datasets DNA Splice Junction with 3,190 examples and Protein
Coding Region with 20,000 examples, it was found that overlapping did not bring any gain to their meta-
learning strategy. Each classifier trained on a disjoint set is biased towards its own set, and when these
classifiers are combined a protocol of knowledge sharing is established, and each individual classifier’s
bias is reduced. Again, we are interested in large data sets relative to those considered in this work.

Domingos [1996] describes how a specific-to-general rule induction system (RISE) was sped up by
applying it to disjoint training sets. This allowed the time required for learning to become linear in
the number of examples. The resulting rule based classifiers were voted (with some weighting) in an
approach very similar to bagging. The major difference was that the size of each training data set was
much smaller than the original. On a set of 7 data sets from the Irvine repository using disjoint partitions
of between 100 and 500 examples they found that the resulting voting performance was generally as
good as or better than applying RISE to all the data.

Dietterich [2000] describes how an ensemble of decision trees was built from a single unmodified
training set. Diversity in the trees was obtained by randomly choosing a test at each internal node
from among the topk tests (ranked by information gain, withk typically 20 ). Each tree was generally
suboptimal, but when voted as an ensemble they provided a bagging-like and sometimes better accuracy
gain. This result seems to suggest that bagging-like performance can be obtained from a set of diverse
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classifiers (in the sense that they make errors on different examples) which may each be suboptimal (in
the sense that they are not as good as a classifier built on all the data without any manipulation), but
similar in accuracy.

Hall et al. [2000] learned decision trees using disjoint partitions of data and then combined the clas-
sifiers. It was found that when using a conflict resolution strategy for combining rules, the accuracy
usually did not decrease for a small number of partitions, at least on the datasets tested. Our current
work is similar to this, but focuses on comparison of bagging-like approaches to simple partitioning of
large datasets.

Provost et al. [1999] found that sub-sampling the data gave the same accuracy as the entire dataset
at much lower computational cost. They analyzed “progressive sampling” methods– progressively
increasing the sample size until the model accuracy no longer improved. It was found that adding more
training instances did not help the accuracy of the classifier, and after some number of instances the
performance of the classifier plateaus. As pointed out later in the discussion section, our results indicate
that simple sub-sampling to produce one smaller training set is not a profitable strategy for the larger
datasets that we consider. However, more complicated sub-sampling strategies may be useful.

3. Experiments
Three sets of experiments were performed. The first uses five small datasets, representative of those
commonly used in pattern recognition and machine learning research. It compares four approaches to
creating a committee of N classifiers, with each classifier created using (1/N)-th of the training data. The
performance of the approaches is also compared to that oftrue bagging —bags of the same size as the
pool of training data, randomly sampled with replacement. The point of this first set of experiments is
to isolate the essential factor(s) leading to good performance in the committee of classifiers. The second
set of experiments uses a mid-size dataset of almost 230,000 examples. The same four approaches are
evaluated on this data set. The point is to verify that the pattern of performance results observed with
smaller data sets holds with a larger data set.

Based on the first two sets of experiments, the disjoint partitioning approach is identified as offering
equivalent performance for a given size of partition/bag. It is also the simplest of the approaches consid-
ered. The last experiment uses a large dataset of approximately 3.6 million examples to investigate the
degree of performance improvement that the disjoint partitioning approach can achieve over a classifier
built on all the original data.

3.1. Variations of Partitioning & Bagging
We investigated four different approaches to creating a committee of classifiers from an original data set.
See Figure 1 for an illustration. One approach is to simply randomly partition the original data into N
disjoint partitions of size (1/N)-th of the original data. Thus the union of the N training sets is identical
to the original data. Results of this approach are labeled with “D” (for “disjoint”) on the graphs.

The second approach is to create N bags of size (1/N)-th of the data. Each bag is created independently,
by random sampling is done with replacement, so the union of the training sets is generally not the same
as the original data. This approach is labeled “SB” (for “small bags”) on the graphs. Comparison of the
SB performance versus that of disjoint partitions shows whether the random replication of data elements
results in any inherent advantage.
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Figure 1: Four Approaches to a Committee of Classifiers.

The third approach is like small bags, but sampling without replacement for each individual bag.
When sampling the individual bags without replacement, elements of the original data do not repeat
within a bag, but may repeat across bags. This approach is labeled “NRSB” (for “no-replication small
bags”) on the graphs.

The fourth approach begins with the disjoint partitions. Then, independently for each partition, a
number of its elements are randomly selected with replacement to be added to the partition to form a
“disjoint bagged” training set. Thus the union of the training sets is a superset of the original data; all
elements of the original data appear, plus some random replications. The number of added elements
is equal to the average number of repeated elements in a bag in the “small bags.” Thus a bag used in
this approach is slightly larger than (1/N)-th of the original data. The amount of “extra” data included
decreases as the bag size decreases. Results of this approach are labeled “DB” (for “disjoint bagged”)
on the graphs. Comparison of the results of this approach to the results of disjoint partitions looks again
at whether the random replication of data elements results in any inherent advantage, but through the
effect of allowing larger bag size.

In addition to the above four approaches, we also ran “true bagging” on each of the five small datasets.
By “true bagging” we mean creating M bags, each of the size of the original data, independently using
random sampling with replacement. True bagging is expected to out-perform committees of classifiers
formed using smaller bags, but the point is to provide a baseline performance comparison for the other
approaches.

For each experiment in which voting is used, ties are broken by assigning the example to the largest
class (in the training set) participating in the tie.

3.2. Datasets
Three of the small data sets are from the UCI repository Blake and Merz [1998], one is from the ELENA
project1, and one is from our own research. The mid-size dataset comes from the problem of predicting
the secondary structure of proteins. It is part of the training data set used with a neural network that won
the CASP-3 secondary structure prediction contest Jones [1999]. We concatenated his train set one and

1ftp.dice.ucl.ac.be in the directory pub/neural-nets/ELENA/databases.
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Letter dataset (UCI)- 20,000 samples in 26 classes
A:789 B:766 C:736 D:805 E:768 F:775
G:773 H:734 I:755 J:747 K:739 L:761
M:792 N:783 O:753 P:803 Q:783 R:758
S:748 T:796 U:813 V:764 W:752 X:787
Y:786 Z:734

Phoneme dataset (ELENA)- 5,404 samples in two classes
0:3,818 1:1,586

Pendigits dataset (UCI)- 10,992 samples in ten classes
0:1,143 1:1,143 2:1,141 3:1,055 4:1,144 5:1,055
6:1,056 7:1,142 8:1,055 9:1,055

Satimage dataset (UCI)- 6,435 samples in six classes
1:1533 2:703 3:1,358 4:626 5:707 7:1,508

Mammography dataset- 11,183 samples in two classes
1:10,923 2:260

Jones’ PDB dataset- 227,260 samples in three classes
H:75,455 C:100,909 E: 50,896

PDB dataset- 3,619,461 samples in three classes
H:1,254,335 C:1,537,261 E:827,865

Table 1: Data Sets Sizes and Class Distributions.

test set one as our overall training set. This dataset contains almost 230,000 elements. Each amino acid
in a protein can have its structure labeled as helix (H), coil (C), or sheet (E). The features for a given
amino acid are twenty values in the range -17 to 17, representing the log likelihood of the amino acid
being any one of twenty basic amino acids. Using a window of size 15 centered around the target amino
acid and an extra bit for each window to indicate an N or C terminus (beginning or end of chain) gives a
feature vector of size 315.

Our large dataset also comes from the Protein Database (PDB) Berman et al. [2000] used in the CASP
contests Livermore National Laboratories [2001]. For 18,098 protein chains taken from the PDB, there
are a total of 3,679,152 amino acids for structure prediction. Using a window of size seventeen centered
around the target amino acid (without an extra N/C terminus bit), we have a feature vector of size 340.
This training data takes from 1.3 to 30 GB to store, depending on how feature values are encoded (e.g.
signed char, integer, or float). The test data for the experiments with the large dataset consists of a
separate set of data. It is all protein chains entered into the PDB from July 11 2000 to July 28 2000, that
are based on X-ray crystal structures with resolution of three angstroms or finer. There were 146 chains
entered in this time frame, made up of 38,423 amino acids. All results are reported on a per amino acid
basis.

The size and class distribution of the datasets are summarized in Table 1. Note that the experiments in-
clude both two-class (Mammography, Phoneme) and multi-class (Letter, PenDigits, SatImage) datasets.
They also include datasets that are approximately balanced (Letter, PenDigits) and those that are skewed
(Mammography, Phoneme, SatImage).

The four approaches to creating a committee of classifiers, plus true bagging, were applied to each of
the small datasets. The number of bags/partitions was varied from one to eight. Given the modest size of
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the datasets, creating bags/partitions of less than (1/8)-th the original size appears to begin to starve the
classifiers for training data. For the experiments on the small and mid-size datasets, the reported results
are calculated from 10-fold cross-validation.

3.3. Base Classifiers and Computing Systems
For the experiments on the small and mid-size datasets, release 8 of the C4.5 decision tree system Quin-
lan [1992] and the Cascade Correlation neural network learning code Fahlman and Lebiere [1990] were
run on standard SUN workstations and a 24-node Beowulf cluster computer (Mimir). Mimir consists
of 900Mhz Athlon processors each with 512Mb of memory and processors are connected with 100Bt
Ethernet. The neural network was only applied to the small data sets due to its extremely long training
times and larger memory requirements.

The one run of the large dataset to produce a single classifier was done on a single node of a 64-
processor SGI IRIX64 with 32 GB of main memory at Sandia National Labs, also using the standard
C4.5 release 8. Creating the one decision tree on the large dataset took approximatelythirty days on
the SGI and was not attempted with the much slower neural network learning code.

The experiments using partitions of the large dataset were run on the DOE’s “ASCI Red” parallel
supercomputer Sandia National Labs [1998]. The ASCI Red has 4,640 compute nodes, each containing
two Pentium III processors sharing 256 MB of memory. The processors run a version of the UNIX
operating system. The system is based on a distributed-memory mesh architecture, and is capable of 3.15
TeraFLOPS. These experiments used a version of C4.5 modified with MPI calls for parallel execution.
The parallel structure of this version of C4.5 is quite simple. The disjoint partitions are loaded into
the different compute node memories and each compute node independently grows a decision tree. The
parallel computation to create eight decision trees on one-eighths of the large dataset takes approximately
eight hours; that is, eight processors running in parallel for eight hours. It is possible to create 32
distributed trees built on1/8 size partitions of the data in approximately 10 hours.

4. Results

4.1 C4.5 on small data sets

Figures 2 through 6 summarize the experimental comparison of the different approaches on the small
datasets detailed in Table 1 for C4.5. The plots compare the performance of two, four, six, and eight
disjoint partitions (D) to that of C4.5 on the complete data set, and to classifier committees formed using
the other three approaches (DB, SB, NRSB). Results are shown as the average paired difference across
the ten folds in the ten-fold cross-validation, with standard error indicated. Note the zero Mean Accuracy
mid-line; if a point is above the line, then the first of the alternatives examined is superior. If the point is
below, then the second was best. And the extent to which the error bar spans the mid-line is the extent
to which the results are inconclusive.

As an example, the first cluster of four data points on the plot in Figure 2 represents the results for a
committee of two classifiers on the Letter data set. The first point is the difference between a committee
of two disjoint partitions and C4.5 trained on all of the data; note that the committee of two classifiers
performs significantly worse. The second point is the difference between a committee formed using
two disjoint partitions versus a committee using two disjoint bags (DB), the third point is two disjoint
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Figure 2: Comparison on Letter Dataset with C4.5.

Table 2: Data Points for “True Bagging” Results.

Dataset C4.5 50 bags 75 bags 100 bags

Phoneme 86.50 89.15 89.02 88.15
Satimage 86.30 90.89 90.86 90.84
Pendigits 96.57 98.42 98.43 98.36
Mammography 98.50 98.76 98.79 98.79
Letter 88.10 93.54 93.65 93.80

partitions versus two small bags (SB), and the fourth point is two disjoint partitions versus no-replication
small bags (NRSB).

From examining the sequence of plots it is clear that disjoint partitions in a number of instances beat
small bags. It appears to make little difference whether the small bags are created by sampling with
or without replacement. The ensembles created from “bagged disjoints” appear to generally perform
slightly better than those created from simple disjoint partitions, but then the training sets for the indi-
vidual decision trees have repeated examples which give some examples greater “weight”.

Because it uses constant-size bags as the number of classifiers in the committee grows larger, “true
bagging” should naturally outperform any of the four approaches. Data points for “true bagging” perfor-
mance are given in Table 2. Tables 3 and 4 show the accuracy results obtained by learning 4 classifiers
each built from 1/4 of a disjoint 4 partition utilizing decision trees and neural networks, respectively.
Each value in the table is an average over a 10-fold cross validation. The results from a 4 partition are
representative, as more partitions cause greater “data starvation” in some of the small domains. Bagging
with 50 to 100 bags clearly outperforms the small ensembles. However, the point is that true bagging
is simply not a practical option for large datasets. For the example large dataset here, true bagging
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Figure 3: Comparison on PenDigits Dataset with C4.5.
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Figure 4: Comparison on Phoneme Dataset with C4.5.

Table 3: 4 Partitions/Bags Accuracy in % using C4.5
Dataset D SB DB NRSB

Phoneme 83.25 82.66 83.36 83.22
Satimage 87.24 86.31 87.00 85.95
Pendigits 96.15 95.65 96.33 96.12

Mammography 98.37 98.51 98.38 98.32
Letter 85.44 84.19 85.525 84.83
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Figure 5: Comparison on SatImage Dataset with C4.5.
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Table 4: 4 Partitions/Bags Accuracy in % using CC
Dataset D SB DB NRSB

Phoneme 83.75 84.06 83.92 83.59
Satimage 89.43 88.97 89 89.26
Pendigits 90.89 91.01 91.73 90.86

Mammography 97.78 98.19 98.43 98.02
Letter 82.15 81.88 81.96 82.17

would require creating about 50 classifiers, each training on a data set of thesamesize as the original
data. Recall that creating one classifier on all the data took 30 days on a substantial SGI system. When
the dataset is too large to handle conveniently in the memory of the typical computer, the dataset must
be broken into some number of practically sized, though not “small,” chunks. The question addressed
here is whether there is any advantage in creating the practically sized chunks using some bagging-like
approach, or whether simple partitioning is sufficient.

4.2 Cascade Correlation on small datasets

Figures 7 through 11 summarize the experimental comparison of the different approaches on the small
datasets detailed in Table 1 using Cascade Correlation. The data was not normalized. The results are
similar to those obtained with C4.5. The disjoint partitions are generally as good or better than small
bags. The exception is that they lose to small bags for a 4 partition on the mammography dataset and
to disjoint bags at every partition in the mammography data set. The mammography dataset is highly
skewed with a small minority class and the repeated examples in the disjoint bag data sets seemed to
make an important, if minor, difference in accuracy. The other exception is on the pendigits dataset
where the disjoint bags approach is better for a 4 partition.

It is interesting that the ensemble of neural networks is generally no worse than learning from all the
data even when partitioning up the small data into eight subsets. In fact, the ensemble is always better
than a single neural network for the letter data set. In general, the ensembles built from disjoint partitions
are no worse than those built from bags of the same size for Cascade Correlation neural networks.

4.3 Results on mid-size data set

The comparison of the four approaches on the mid-size dataset are shown with C4.5 in Figure 12. The
results are the means of paired differences and the standard error from a 10-fold cross validation from 4
to 16 disjoint partitions. In all cases the ensemble classifier learned from disjoint partitions resulted in a
significantly better classifier than applying C4.5 to all of the data.

Again, we see that simple disjoint partitioning offers excellent performance in comparison to the
other options. In particular, the “small bags” approach performs poorly. Only the “bagged disjoints,”
with its slightly larger number of examples in each bag, offers any hint of performance improvement
over disjoint partitions. The “bagged disjoints” have the same number of distinct examples with a few
repeat examples which essentially gives the repeat examples greater weight.
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Figure 7: Comparison on Letter Dataset with Cascade Correlation.
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Figure 8: Comparison on PenDigits Dataset with Cascade Correlation.
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Figure 9: Comparison on Phoneme Dataset with Cascade Correlation.
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Figure 10: Comparison on SatImage Dataset with Cascade Correlation.

13



0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4
Mammography (Cascade)

Partitions/Bags

M
ea

n 
A

cc
 +

−
 S

E
M

2 D−CC
2 D−DB
2 D−SB
2 D−NRSB
4 D−CC
4 D−DB
4 D−SB
4 D−NRSB
6 D−CC
6 D−DB
6 D−SB
6 D−NRSB
8 D−CC
8 D−DB
8 D−SB
8 D−NRSB

Figure 11: Comparison on Mammography Dataset with Cascade Correlation.
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Figure 12: Results on (Jones’) “Medium” PDB dataset.
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Table 5: Jones dataset: Average and Standard Deviation of CPU time (longest time taken to learn a
decision tree on a partition/bag by a processor) in seconds for 10-folds. Convention = D: Disjoint; SB:
Small Bag; NRSB: No Replication Small Bag. For instance, 4-D means 4 disjoint partitions.

Approach Average Time Standard Deviation

C4.5 9094.38 137.11
4-D 963.61 14.42
4-SB 990.61 17.04
4-NRSB 967.96 21.22
8-D 342.172 8.46
8-SB 352.04 8.98
8-NRSB 339.51 5.45
12-D 197.19 5.52
12-SB 202.55 3.89
12-NRSB 196.98 4.72
16-D 127.48 3.6
16-SB 130.62 1.32
16-NRSB 128.50 2.7

4.3.1 Timing

We did a detailed comparison of the time required to create an ensemble on the Beowulf cluster for the
Jones data set. Table 5 shows the average and standard deviation over 10 trials. For disjoint partitioning
for a 4 partition, there is an average of a 9.4 times speed up over learning a decision tree on all the data,
which increases to 26.6 times for an eight partition, 46.1 times for a 16 partition and 71.3 times for a 24
partition. While the speed gain is impressive, it is actually true that for very large data sets that do not
fit in main memory all the data cannot be practically used unless a distributed approach is pursued.

4.4 Partitioning results on large dataset

Figure 13 compares the results of creating one decision tree on all of the large dataset versus using a
committee of N classifiers, for N = 8, 16, 24, and 32. All of the committees were formed using disjoint
partitions of size (1/8)-th of the large PDB dataset. This size partition just fills the memory of the
compute nodes on the ASCI Red. The N=8 point represents a straightforward disjoint partitioning, as
was used with the smaller datasets. For the committees of 16, 24, 32, and 40 classifiers, we varied the
earlier methodology to make use of multiple different partitions of the dataset. For the committees of 16,
24, 32, and 40 classifiers, multiple different partitions of the dataset were used. For example, to create a
set of sixteen classifiers, eight classifiers trained on a different eight-partition of the data were added to
those created on the original eight-partition. We report an average and standard deviation over five trials
of different ensembles of trees of the appropriate size.

The average accuracy per amino acid of a single classifier trained on (1/8)-th of the large dataset is
71.21%. A single decision tree created using all the data performs substantially better than this, 75.72%
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Figure 13: Partitioning Results for large PDB dataset.

versus 71.21%. At the same time, an average committee of eight classifiers created on (1/8)-ths of the
data performs substantially better than a single tree created on all the data, 79.1% versus 75.72%.

It took approximately 30 days to create a single tree from all the data and an average of 10 hours to
create an ensemble of from 8 to 32 trees. We did some experiments to determine the relative speeds of
the SGI machine vs. an ASCI Red processor and found the ratio to be 1.92 for the same size decision
tree learning problem. So, the Red processor is significantly faster. Normalizing for processor speed,
the distributed learner can be created approximately 37 times faster than learning from all the data.

5. Conclusions and Discussion
The results support several important conclusions. The overall conclusion is that datasets too large to
handle practically in the memory of the typical computer are appropriately handled by simple partition-
ing to form a committee of classifiers. More specifically, a committee created using disjoint partitions
can be expected to perform at least as well as a committee created using the same number and size of
bootstrap aggregates (“bags”). Also, the performance of the committee of classifiers can be expected to
exceed that of a single classifier built from all the data.

The following considerations may provide insight into the pattern of results. Practical factors aside,
one generally wants (a) each classifier in a committee to be formed using as much data as possible,
and (b) the size of the committee to be as large as possible. Practical considerations typically (a) limit
the amount of data that can be used in training a single classifier, and (b) limit the size of a classifier
committee. If the data set is large enough, or the memory limit small enough, then partitioning into N
disjoint subsets gives a reasonable size committee and this approach should suffice. If the N disjoint
partitions result in too small of a committee, then the data set may be partitioned multiple times to
increase committee size, as we did in Section 4.4. A typical result from partitioning the data multiple
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Table 6: Multiple 2 Partitions on the Letter data set for a ten-fold cross validation using C4.5. C4.5 is
88.1% accurate in a 10-fold CV.

Number of 2 partitions Accuracy standard deviation

1 83.645 1.078
2 89.225 0.522
3 91.21 0.589
4 91.885 0.461
5 92.26 0.427

times is shown in Table 6 for the “small” letter data set. The data set is broken into a two partition
five different ways. A tenfold cross validation is done, meaning that the test set is left out and then the
training set partitioned into halves (8 different ways). From the table, it is clear that accuracy continues
to increase and with 16 partitions we are approaching the accuracy of pure bagging (93.8% for 100
bags), considerably outperforming a C4.5 generated decision tree from the whole data set.

Results obtained here seem to support the position that bagging results depend simply on obtaining
a diverse set of classifiers Breiman [1996], Chawla et al. [2001], Dietterich [2000], Domingos [1996].
Building classifiers on disjoint partitions of the data provides a set of classifiers that meet this require-
ment. Each individual classifier performs similarly, but correctly classifies a (partially) different set of
examples.

Some researchers have suggested that many large-data-set problems can be solved using only a frac-
tion of the data, perhaps by simple sub-sampling. However, recent work has suggested that all the data
(even for very large training data sets) may result in the maximal accuracy classifier Perlich et al. [2002].
Classical pattern recognition would suggest that this question is more appropriately viewed in terms of
the density of training sample population in the feature space, rather than simply the size of the dataset.
There is excess data only when (parts of) feature space are densely populated. The fact that the average
(1/8)-th partition of our large dataset had performance of 71.21%, whereas a single classifier trained on
all the data gave 75.72%, indicates that the original data could not be profitably sub-sampled in a simple
way. Given that the problem has a 340-dimension feature space, this is perhaps not surprising, as even
3.6 million examples can result in a sparse population of such a space.
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