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Abstract. We describe an ensemble learning approach that accurately learns 
from data that has been partitioned according to the arbitrary spatial 
requirements of a large-scale simulation wherein classifiers may be trained only 
on the data local to a given partition.  As a result, the class statistics can vary 
from partition to partition; some classes may even be missing from some 
partitions. In order to learn from such data, we combine a fast ensemble 
learning algorithm with Bayesian decision theory to generate an accurate 
predictive model of the simulation data. Results from a simulation of an 
impactor bar crushing a storage canister and from region recognition in face 
images show that regions of interest are successfully identified. 

1   Introduction 

We consider the problem of dealing with an amount of data too large to fit in the 
memory of any one computer node and too bandwidth-intensive to move around to 
neighboring nodes, a problem which has far-reaching implications [1].   Since the data 
cannot be moved around between nodes, there may exist no logical grouping other 
than that in which it was originally stored.  Such a problem exists for the United 
States Department of Energy’s Advanced Simulation and Computing program [2], 
wherein a supercomputer simulates a hypothetical real-world event.  Data is stored on 
disks attached to compute nodes according to its spatial location within the 3D 
simulation.  The concern is that the storage allocation for the simulation optimizes for 
balanced and efficient computation, without regard to conditions that might make it 
easy or difficult for a machine learning algorithm to use the resulting data. 



In analyzing these simulations, developers and users want to spot anomalies which 
may take days to find in a massive simulation, especially if it is important to spot 
every anomaly.  So, marking some areas of interest and finding others in the same or 
similar types of simulations can greatly reduce the time to debug and analyze a 
simulation.  Generally, experts will manually designate salient areas in the simulation 
as “interesting” according to personal, subjective criteria.  This process would be 
markedly sped up by analyzing those points (examples) and suggesting new points 
across each compute node.   

In this paper, we show examples from a simulation of a storage canister being 
crushed by an impactor bar from above at approximately 300 miles per hour.  In order 
to illustrate how the complete simulation appears, a visualization of the partitions is 
provided below in Figure 1.  The different shades of grey represent the partitioning of 
the simulation in a distributed environment.  Note that pieces of the impactor bar 
crushing the canister are also broken up spatially according to the partition. 

 

Fig. 1. A visualization of the data as distributed across compute nodes.  There are four 
partitions shown in different gray levels as the storage canister is crushed. 

As a result of the partitioning, areas of saliency may be limited to only a few 
nodes.  Salient points, being few in number, exhibit a pathological minority-class 
classification problem.  In the case of a partition having zero salient points, a single-
class “classifier” will be learned.  Furthermore, a prominent event on one node is not 
necessarily indicative of saliency on another node experiencing a similar event. 

We show that it is possible to obtain an accurate prediction of salient points even 
when the data is broken up arbitrarily in 3D space with no particular relation to 
feature space.  Results on this data set indicate that experts working with much larger 



simulations can benefit from the predictive guidance obtained from only a small 
amount of relevant data. 

2   Data description 

In this paper, we look at experiments in which a canister is rapidly crushed much 
like a person might crush a soda can.  The walls of the canister buckle under the 
pressure and the top of the canister accelerates downward until it meets the bottom.  
In our experiments we observe 44 slices of time in which the above event was 
simulated and recorded. 

2.1   Physical and Spatial Characteristics 

Nine physical variables were stored for each of 10,088 nodes within each of 44 
time steps.  They are the displacement on the X, Y, and Z axes; velocity on the X, Y, 
and Z axes; and acceleration on the X, Y, and Z axes.  The total number of data 
samples was 44•10088=443,872. 

The data for each of the time steps was divided spatially according to the compute 
node to which it is assigned.  The partitioning was performed vertically along the Y 
axis of the canister, dividing the canister into four disjoint spatial partitions of roughly 
equal size.  Each compute node can see only one of these partitions, and we assume 
that it is too expensive in time or storage space to move data to another compute node.   

2.2   Train and Test Sets 

For every time step, those pieces of the canister that have buckled and been 
crushed were marked as salient.  To assist in labeling, the “Equivalent Plastic Strain” 
(EQPS), a measure for the stress on the surface of the canister [3], has been calculated 
and was used as a general template in choosing salient points.  At the beginning of the 
simulation, before the impactor bar has made contact, there were no salient nodes 
within the mesh.  As time progresses and the canister collapses, more and more nodes 
were marked salient.   

The process of marking salient nodes within the mesh can be as precise as the 
expert demands.  However, a high level of precision requires a correspondingly high 
level of effort marking the data.  In order to model a practical scenario where an 
expert is more interested in saving time than catering to the nuances of machine 
learning, we have allowed a fair amount of noise in the class labels by using tools that 
mark areas as salient rather than individual points—there are over 10,000 points per 
time step.  Since the impactor bar and the canister are so close in proximity, it is quite 
reasonable to assume the bar will often have areas incorrectly marked as salient.   

In each time step and in each partition, saliency was designated in the above 
fashion.  For each partition, data present in the time steps was collapsed into two 
segments, a training set and a test set, according to the time step number: even time 



steps were combined into a training set, odd time steps were combined into a test set.  
Therefore our experiments used four partitions each having two data sets. 

3   Classification system 

For each training set developed on each compute node, we used Breiman’s random 
forest algorithm to rapidly generate an ensemble of 25 classifiers.  The motivation for 
using this ensemble technique stems from the inherent speed benefit of analyzing only 
a few possible attributes from which a test is selected at an internal tree node.  A 
complete description of the random forest algorithm can be found in [4].  Its accuracy 
was evaluated in [5] and shown to be comparable with or better than other ensemble-
generation techniques. 

Classification of a test point within the simulation involves prediction by each 
partition’s random forest. Because our algorithm was designed to work when only a 
few compute nodes have salient examples, a simple majority vote algorithm may fail 
to classify any salient points if the number of compute nodes trained with salient 
examples is less than half  the number of compute nodes.  In a large-scale simulation 
it is likely that there will be nodes which have no salient examples in training.  
Therefore we must consider the priors:  the probability that any given node contained 
salient examples during training and so is capable of predicting an example as salient.  
A breakdown of our algorithm follows.   

 
p(w1|x) = number of ensembles voting for class w1 for example x, 

P(w1)   =  number of ensembles capable of predicting class w1 
Classify as w1 if:  p(w1|x)/P(w1) > p(w2|x)/P(w2) 
Classify as w2 if:  p(w1|x)/P(w1) < p(w2|x)/P(w2) 

A tie, p(w1|x)/P(w1) = p(w2|x)/P(w2), is broken randomly 
 

Of course, this is nothing more than Bayesian decision theory applied to the 
majority vote for a two-class problem.  Moving to an n-class problem is trivial: 

Classify as wn:  argmaxn (p(wn|x)/P(wn)) . (1) 

4   Experiments 

The random forest of 25 trees for each partition returns a single prediction for a 
class.  Those classifier predictions are combined into a single ensemble prediction for 
the example as outlined above, using the Bayesian majority vote with priors.  Training 
is performed on the data contained in the even time steps.  Predictions on odd time 
steps are compared to the marked saliency in the odd time steps on a point-by-point 
basis to obtain an estimate of the true error.  We also obtain predictions on even time 
steps to evaluate the re-substitution error.  Our results are compared with those of 
using a single classifier within each partition and a single classifier for the entire 
simulation. 



Fig. 2.   Left:  Ground truth as labeled in time step 3.  Right:  Predicted class labels. 

Fig. 3.  Left:  Ground truth as labeled in time step 19.  Right:  Predicted class labels. 

 

Fig. 4.  Left:  Ground truth as labeled in time step 37.  Right:  Predicted class labels. 

 



 

Fig. 5.  Left:  Training data as labeled in time step 4.  Right:  Predicted class labels. 

 

Fig. 6.  Left:  Training data as labeled in time step 20.  Right:  Predicted class labels. 

 

Fig. 7.  Left:  Training data as labeled in time step 38.  Right:  Predicted class labels. 

 



Table 1. Error percentage and m-estimates obtained in our experiments 

Algorithm Used Error 
Percentage 

m-Estimate 

Single Classifier 24.3% 0.59 
Single Classifier in each Partition 26.7% 0.54 
Random Forest in each Partition 25.9% 0.55 

5   Results 

The goal of the prediction stage is to direct experts towards additional salient 
regions.  Unfortunately, a suitable metric for the algorithm’s usefulness in finding and 
classifying regions is non-trivial.  For this reason, we provide figures to help illustrate 
the accuracy of our approach.  Figures 2, 3, and 4 show the algorithm’s predictive 
power while the canister is being crushed.  In Figures 5, 6, and 7 we observe the re-
substitution error on the training data.  Darker areas indicate regions that have been 
classified as salient.  Ensemble predictions are provided to the right of the labeled 
data in each of the figures. 

In Table 1, we provide an estimate of the true error for our experiments.  Because 
this error is based on a point-to-point comparison between our labeled test set and the 
predictions upon the test set, and because we know “regions” are salient rather than 
“points,” we could potentially lower the error by utilizing image processing 
techniques such as erosion and dilation.   The error rate for a single classifier trained 
on each partition is 26.7%.  The ensemble error rate of 25.9% was not reduced by 
using 250 classifiers per partition instead of 25.   

As a way of calculating how accurate the algorithm was for the minority class we 
used the m-estimate [6] shown below: 

Pm=(TP+mb)/(TP+FP+m) . (2) 

In this equation b is the prior for the minority class, m is the parameter for controlling 
the shift towards b, and TP and FP represent number of True Positives and False 
Positives.  The prior for the minority class in our problem is 0.30.  As suggested in 
[7], we have chosen m such that bm=10.  An evaluation of this method as it 
corresponds to decision trees is shown in [8].  In the preceding experiments, the forest 
of trees produced a slightly higher m-estimate, 0.55, than the single tree per partition, 
0.54.   

Partitioning the data spatially, while necessary for our large simulation, negatively 
affects the accuracy of the results.  In a comparison with the performance of a single 
pruned decision tree, our multiple classifier spatially partitioned result is 1.6% less 
accurate.  The m-estimate of the single pruned decision tree was 0.59. While such 
losses in accuracy are unfortunate, this result shows that the problem of having a 
spatially partitioned data set is non-trivial; even an ensemble created from a random 
disjoint partitioning often provides an increase in accuracy over a single classifier, 
especially so in the case of a large dataset [9]. 

 



  

Fig. 8.   Image from the FERET database showing marked saliency for both “Interesting” and 
“Somewhat Interesting” classes for eight partitions delineated by white lines.  The “Interesting” 
class contains the eyes and mouth. The “Somewhat Interesting” class contains the eyebrows. 

  

Fig. 9.   Left:  Saliency predictions using KNC with 11 centroids.  Right:  Bayesian majority 
vote with priors using 1,000 random forest trees per partition. 

6   Previous Work Revisited 

In revisiting our previous work [1], we saw definite improvements in the 
classification accuracy of face images obtained from the FERET database [10] using 
the approach discussed here.  In those experiments we employed a k-nearest centroid 
algorithm which lacked adequate speed for terascale data sets but achieved reasonable 
results given our assumption of spatially disjoint subsets.  An example from the 
database is shown in Figure 8. 

In previous experimentation with a k-nearest centroid algorithm we were able to 
identify salient regions though regions of noise were also labeled.  These experiments 
did not use the Bayesian majority vote.  We compare those results with a forest of 
1,000 random forest trees trained on each of the eight partitions in combination with 
Bayesian majority voting using priors.  Many fewer pixels are labeled incorrectly 



using this later method.  A comparison of the k-nearest centroid algorithm using 
eleven centroids to eight random forests of 1,000 decision trees is shown in Figure 9.  
Though the random forest results are 5.2% more accurate than the KNC results for 
this image, neither provides for significant differentiation between the “interesting” 
and “somewhat interesting” classes, due to the weakness of the derived feature 
attributes.  The random forest image contains fewer false positive regions than the one 
created with KNC, especially in the regions to the left and right of the mouth.  Fewer 
false positives would guide researchers examining the data to fewer unimportant 
regions. 

7   Summary and Discussion 

Some simulations must be broken up across multiple processors in order to obtain 
results in a reasonable amount of time.  The method of breaking data into pieces is not 
necessarily valuable, and possibly even harmful, to machine learning algorithms, as it 
violates the usual assumption that class statistics will be the same across all the 
training data and the test data.  In this paper we have shown how large simulation data 
broken up non-intuitively (according to a machine learning perspective) into spatial 
regions may be classified using a combination of fast ensemble techniques and 
Bayesian decision theory.   

Preliminary results on a relatively small problem indicate that our approach has 
merit.  In our simulation of the crushing of the storage canister, the resultant 
predictions appear more accurately classified than the training data which has been 
labeled haphazardly in accordance with time constraints placed upon experts.  This 
may signify that the algorithm is learning the underlying EQPS function that was 
generally used to label salient points.  A comparison with our previous work using 
facial images also showed improvement.   

In preparation for larger simulations with greater minority class problems, we 
conjecture that we might assign a bias, or risk (Rn(wn|x)), to a particular class utilizing 
the same sound Bayesian theories upon which we based our algorithm: 

Classify as wn:  argmaxn (Rn(wn|x)/P(wn)) . (3) 

It may also be possible to assign dynamic weights to the classifiers as shown in [11]. 
Of particular interest is the ability to classify regions rather than points since 

researchers examining these simulations will be looking at areas of interest within the 
simulation.  An algorithm to perform such a task is currently being developed. 

We believe the speed associated with the rapid generation of ensemble classifiers 
will enable the tractable prediction of saliency in much larger data sets.  The general 
problem of creating an ensemble from data that was partitioned without regard to the 
simplicity of the machine learning algorithm is an important practical problem that 
merits additional attention. 



Acknowledgments 

This research was partially supported by the Department of Energy through the 
Advanced Strategic Computing Initiative (ASCI) Visual Interactive Environment for 
Weapons Simulation (VIEWS) Data Discovery Program Contract number:  DE-
AC04-76DO00789.   

Bibliography 

1. L. O. Hall, D. Bhadoria, and K. W. Bowyer.  "Learning a model from spatially 
disjoint data," 2004 IEEE International Conference on Systems, Man and 
Cybernetics, October 2004. 

2. National Nuclear Security Administration in collaboration with Sandia, Lawrence 
Livermore, and Los Alamos National Laboratories,  
“http://www.sandia.gov/NNSA/ASC/” 

3. B.S. Lee, R.R. Snapp, R. Musick, “Toward a query language on simulation mesh 
data:  an object oriented approach,” Proceedings of the International Conference 
on Database Systems for Advanced Applications, Hong Kong, April 2001. 

4. L. Breiman, "Random forests," Machine Learning, vol. 45, pp. 5-32, 2001. 
5. R. E. Banfield, L. O. Hall, K. W. Bowyer, D. Bhadoria, W. P. Kegelmeyer and S. 

Eschrich, "A comparison of ensemble creation techniques", The Fifth 
International Conference on Multiple Classifier Systems, Cagliari, Italy, June, 
2004. 

6. J. Cussens, “Bayes and pseudo-Bayes estimates of conditional probabilities and 
their reliabilities”, Proceedings of the European Conference on Machine 
Learning, 1993. 

7. B. Zadrozny and C. Elkin, “Learning and making decisions when costs and 
probabilities are both unknown”, Proceedings of the Seventh International 
Conference of Knowledge Discovery and Data Mining, 2001. 

8. N. V. Chawla, “C4.5 and imbalanced data sets:  investigating the effect of 
sampling method, probabilistic estimate, and decision tree structure, Workshop 
on Learning from Imbalanced Data Sets II, 2003. 

9. N.V. Chawla, T.E. Moore, Jr., L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer and C. 
Springer, “Distributed learning with bagging-like performance”, Pattern 
Recognition Letters, Vol. 24 (1-3)  pp. 455-471, 2003. 

10. “The facial recognition technology (FERET) Database”,  
http://www.itl.nist.gov/iad/humanid/feret/ 

11. M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.MT:  A new approach to 
incremental learning,” The Fifth International Conference on Multiple Classifier 
Systems, Cagliari, Italy, June, 2004. 


