Learning to Predict Salient Regions from Disjoint and Skewed Training Sets
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Abstract

We present an ensemble learning approach that achieves
accurate predictions from arbitrarily partitioned data. The
partitions come from the distributed processing require-
ments of a large scale simulation where the volume of the
data is such that classifiers can train only on data local
to a given partition. As a result of the partition reflecting
the need for efficient simulation analysis, rather than the
needs of data mining, the class statistics vary across parti-
tions; indeed some classes will likely be absent from some
partitions. We combine a fast ensemble learning algorithm
with majority voting to generate an accurate working model
of the simulation. Results from several simulations show
that regions of interest are successfully identified in spite of
training set class imbalances. Accuracy is analyzed both
at the level of nodes in the simulation data structure, and
in terms of higher-level regions of interest. It is shown that
over 98% of salient regions are found in independent test
sets. Hence, this approach will be a significant time saver
for simulation users and developers.

1. Introduction

We consider the problem of dealing with training data
that is too large to fit in the memory of a typical computer
(or compute node), too large to cycle between computers,
and that does not have a uniform distribution of classes of
data across nodes [5]. Such a problem exists for the United
States Department of Energy’s Advanced Simulation and
Computing program (ASC) [1], wherein a supercomputer
simulates real-world events of strategic importance [9]. The
simulation data is partitioned and distributed across sepa-
rate processors, to facilitate parallel computation. Of con-
cern for learning is that the storage allocation optimizes for
efficient computation of the simulation, without regard to
conditions that might make it easy or difficult for a ma-
chine learning algorithm to use the resulting data. Physi-
cal objects in the simulation may well be distributed across
processors such that adjacent regions that would not nor-
mally be separable are, in fact, separated.

In analyzing the results of these simulations, develop-
ers and users want to spot anomalies that may take days
or weeks to find by hand. Developers look for anomalies
that arise due to bugs in the simulation. Users look for
anomalies that represent important events. Therefore, man-
ually marking some areas of interest and automatically find-



ing others in the same or similar types of simulations can
greatly reduce debugging and analysis time.

In this paper, we give examples of learning from several
simulations of a storage canister being crushed by an im-
pactor bar from above. We perform separate experiments
using vertical and horizontal partitioning of the canister.
These two different partitioning schemes are designed to
illustrate the problem of an arbitrary data partitioning, pre-
cisely because they complicate the use of a learning algo-
rithm. An illustration of the simulation model with vertical
partitions appears in Figure 1, where the different shades
of gray represent the partitioning of the simulation in a dis-
tributed environment. Note that pieces of the impactor bar
crushing the canister are also broken up spatially according
to the partition. A visualization of the horizontal partitions
is shown in Figure 2.

As a result of the partitioning, areas of saliency in some
partitions may be limited to only a few points in the sim-
ulation mesh (called nodes). Each node typically has a set
of physical characteristics associated with it, as well as a
mesh location. Salient nodes, being few in number, exhibit
a pathological minority-class classification problem. In the
case of a partition having zero salient points, the only clas-
sifier that can be learned is a trivial one that always predicts
unknown.

We show that it is possible to obtain an accurate pre-
diction of salient points even when the data is partitioned
arbitrarily in 3D space with no particular relation to feature
space. Results on the canister data sets indicate that experts
working with much larger simulations can benefit from the
predictive guidance obtained from only a small amount of
relevant data. As both designers and simulation users are
most interested in finding a salient region rather than in-
dividual salient nodes, we also evaluate how well our ap-
proach can detect connected groups of salient nodes.

2 Data description

In the canister-crush simulation, an impactor bar crushes
a canister from above. The walls of the canister buckle un-
der the pressure and the top of the canister travels downward
until it meets the bottom. Typical simulations have from 25
and 44 timesteps depending on the impactor speed and sim-
ulation completion.

2.1 Physical and spatial characteristics

In the four different instances of the EXODUS II for-
mat [10] can-crush simulation, several physical variables
are stored for each node within each time step. These vari-
ables are the displacement on the X, Y, and Z axes; velocity
on the X, Y, and Z axes; and in canister simulation 1 only,
acceleration on the X, Y, and Z axes. An ”Equivalent Plastic

Strain” variable, which is a metric for the stress on the sur-
face of the canister [8], is also stored for each finite element
of eight nodes in each time step. This variable is not used
in training or testing, though it contributed as a template in
labeling the ground truth. The nodes and finite elements of
the simulation model are embedded in a mesh framework.
Table 1 shows the parameter settings for each simulation.
Table 2 shows the ranges of the features in each simulation.

Figure 3 shows a visualization of ground truth data in
the final time step of each simulation. Simulation 2 ends
before much of the canister has been crushed. In simulation
4 the impactor bar itself is deformed when a user runs the
simulation for too long. This could be an example of some-
thing interesting to a simulation designer, as it might violate
physical constraints.

The data for each time step is divided spatially accord-
ing to the compute node to which it is assigned. The vertical
partitioning is performed parallel to the Y axis of the canis-
ter, dividing the canister into four disjoint spatial partitions
with 1,640, 1,886, 1,886, and 1,312 nodes per time step.
The horizontal partitioning is performed along the Z axis
of the canister, dividing the canister into four disjoint spa-
tial partitions with 1,640, 1,640, 1,640, and 1,804 nodes per
time step. Data from the impactor bar is not used for train-
ing or testing in either horizontal or vertical experiments.
This represents the focus of the simulation designers on the
integrity of the storage container.

2.2 Train and test sets

To create labeled training data for every time step, those
pieces of the canister that have buckled and been crushed
are manually marked as salient, using a custom add-on to
ParaView, an open-source visualization tool for scientific
data [6]. At the beginning of the simulation, before the
impactor bar has made contact, there are no salient nodes
within the mesh. As time progresses and the canister col-
lapses, more and more nodes are marked salient. Every
node not marked salient receives the label unknown, rather
than not salient, to reflect the fact that, in general, the users
will indicate only salient regions.

Designating nodal saliency by means of an expert can
in principle be as precise as desired, but more precision re-
quires greater effort. There are 6,724 canister nodes in each
simulation model, each of which may be labeled differently
in each time step. The domain expert will generally want to
mark regions in a manner that saves time rather than cater-
ing to the nuances of data mining. Thus we have allowed a
fair amount of noise in the class labels by using tools which
mark areas rather than individual nodes in the simulation
model.

A classifier or an ensemble of classifiers is trained on
each of the four partitions of a simulation. Testing on each
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Figure 1. A visualization of the data as distributed across compute nodes for vertical partitions. Four
partitions are shown in different gray levels as the storage canister is crushed. Partitions 0 to 3 in
numerical order are shown from right to left.

o

Figure 2. A visualization of the data as distributed across compute nodes for horizontal partitions.
Four partitions are shown in different gray levels as the storage canister is crushed. Partitions 0 to
3 in numerical order from top to bottom are beneath the impactor bar in the left view.




Table 1. Physical and spatial characteristics for the canister simulations. Impactor bar velocity is in
inches per second. "% salient can nodes" indicates the fraction of the can marked as salient.

| Canister simulation | 1 | 2 | 3 | 4 |
Bar initial velocity (in/s) 5,000 2500 5,000 7,500
# nodal variables 9 6 6 6
# can nodes per time step 6,724 6,724 6,724 6,724
# bar nodes per time step 3,364 1,740 1,740 1,740
Total # nodes per time step 10,088 8,464 8,464 8,464
# time steps 44 31 31 25
Total # can nodes 295,856 | 208,444 | 208,444 | 168,100
% salient can nodes 64.7 27.3 51.3 60.7

Table 2. Feature ranges for canister data in simulations 1 to 4. NA denotes not applicable.

Feature Simulation 1 Simulation 2 Simulation 3 Simulation 4
min | max min | max min [ max min | max
DISPLX (in) -7.2 14 -4.0 0.5 -4.2 04 -4.5 1.0
DISPLY (in) -5.5 1.5 -1.2 1.5 -0.8 1.6 -1.6 5.9
DISPLZ (in) -17.8 0.1 -7.0 0.0 -13.2 0.0 -16.1 0.0
VELX (in/s) -4,820 2,252 | -4,529 | 1,161 | -4,562 | 2,138 | -30,840 | 14,385
VELY (in/s) -7,891 3,357 | -1,327 | 2,541 | -2,113 | 3,616 | -15,703 | 59,456
VELZ (in/s) -8,862 3,287 | -4,837 493 | -8,226 998 | -15,980 3,986
ACCLX (in/s?) | -1.75E+09 | 2.39E+09 NA NA NA NA NA NA
ACCLY (in/s?) | -2.47E+09 | 3.38E+09 NA NA NA NA NA NA
ACCLZ (in/s?) | -3.99E+09 | 3.02E+09 NA NA NA NA NA NA

of the other simulations is performed using a probabilistic
combination (details to follow) of the votes from the four
ensembles. Therefore each test example is classified by us-
ing classifiers trained on examples from another simulation.

3 Classification system

For the case of a classifier or ensemble created from
the training data at each compute node, we compare dif-
ferent learning algorithms capable of building a predictive
model from large amounts of data in a timely fashion. First,
a single pruned decision tree is created from data within
each compute node to establish a baseline. Then we use
Breiman’s random forest algorithm [4] with 250 trees per
partition and unweighted predictions, which produces a sin-
gle class vote for the forest. The motivation for using ran-
dom forests stems from the inherent speed benefit of choos-
ing a split from only a few randomly selected attributes at
each branch in the tree. A complete description of the ran-
dom forest algorithm can be found in [4]. Its accuracy was
evaluated in [2] and shown to be comparable with or better
than other ensemble generation techniques.

Classification of a test point within the simulation in-

volves prediction by each partition’s ensemble. Because our
algorithms need to work when only a few compute nodes
have salient examples, a simple majority vote algorithm
may fail to classify any points as salient if the number of
compute nodes trained with salient examples is less than
half of the number of compute nodes. In a large-scale sim-
ulation it is likely that there will be nodes which have no
salient examples in a training set. Therefore we must con-
sider the priors: the probability that any given node con-
tained salient examples during training and therefore is ca-
pable of producing a classifier that can predict an example
as salient. A description of this algorithm [3] is as follows:

p(w1|z) = percentage of ensembles voting for class w- for
example x

P(wy) = percentage of ensembles capable of predicting

class w;
Classify as wy if: Z5is) >
Classify as w if: Zialt) < Zheele)

Thus, a probabilistic majority vote is applied to a two-
class problem. An n-class problem as addressed in [3] can
be dealt with as follows:
Classify as wy, : argmaz,(

p(wa|z)
P(w2)

(w'n/ |m)
pp(wn) )

In the case of a tie vote, the unknown class is predicted,



Figure 3. Final time step in simulations 1, 2, 3, and 4 (left to right). Ground truth salient regions are

darker than unknown regions.

since a definite salient vote has not been determined. We
are interested in directing people to salient regions, that is,
connected groups of salient points. Missing a few points
within a region due to tie votes for those particular points is
unlikely to be important for region detection.

4 Experiments

Training is performed on the data contained in each of
the four partitions of each of the four simulations 1, 2, 3,
and 4 to create both a 250-tree random forest ensemble and
a single pruned decision tree for each partition. The deci-
sion tree classifier or the random forest ensemble of each
partition in a training simulation returns a single prediction
for the test example of a test simulation. The four predic-
tions from those classifiers or ensembles are combined into
a single prediction for the example in the separate test sim-
ulation using a probabilistic majority vote. Predictions on
the test examples are compared to the marked saliency of
the test examples to determine accuracy.

The salient regions of the data are marked using region-
based tools of the ParaView application [6]. The ensem-
bles of classifiers used to classify the test data often produce
smaller salient clusters of nodes or even individual isolated
salient nodes, which do not correspond well to the larger
marked, ground truth regions. In order to improve the re-
gional accuracy of these ensembles, we employ some of
the regional tools in the Feature Characterization Library
(FCLib-1.2.0) toolkit [7] to process the ensemble prediction
data. The numerical class label (0.5 for unknown, 1.0 for
salient) of all nodes within a physical radius of two inches
of each node is averaged in a smoothing operation. After
smoothing, nodes have saliencies in the range from [0.5,1].
A threshold of 0.75 is used to label the nodes as salient, as
that is midway between the 0.5 and 1.0 used to signify “Un-
known” and “Salient” in the training data. Regions are cre-
ated of connected components of salient nodes after thresh-
olding. Smoothing tends to remove the smaller salient re-
gions and isolated salient nodes. Another tool is used to

generate overlap matrices of ground truth and predicted re-
gions.

5 Results

Results are separated into nodal results and regional re-
sults. Please note that results labeled decision tree ("DT” in
Table 3) are from building one decision tree per partition.
However, when used to classify an example, the decision
trees built from the different training partitions form a mini-
ensemble.

5.1 Nodal results

Table 3 shows the overall accuracies for cross simulation
experiments. Since the final vote is computed using 1 vote
from each of the 4 partitions (if each partition has examples
of both classes), ties may exist in this 2-class experiment.
Ties are assigned to the unknown class. Nodal accuracies
are calculated by designating each nodal example as one of
the following: true negative, true positive, false negative,
or false positive, depending on the ground truth and pre-
dicted class of the example. Overall nodal accuracies are
calculated by dividing the total sum of true negatives and
true positives by the total sum of examples. The highest
overall accuracy is generally obtained with random forests
for a given train/test pairing. However, the algorithms are
often close in accuracy and there is not a consistently best
approach.

5.2 Regional results

The goal of the prediction stage is to direct experts to
additional salient regions. Assessing the accuracy of an al-
gorithm in finding and classifying regions is more difficult
than determining the above node-level accuracy results. We
compute a quantitative measure of region detection accu-
racy. Our regional accuracies designate each regional ex-
ample as true positive, false negative, or false positive. Only



Table 3. Cross simulation accuracies for canister simulations 1, 2, 3, and 4. DT denotes decision

tree. RF denotes random forest.

Ensemble | Simulation Four vertical partitions Four horizontal partitions
Train | Test Accuracy (%) Accuracy (%)
Nodal Regional Nodal Regional
Unsmoothed | Smoothed Unsmoothed | Smoothed
DT 1 2 94.5 77.5 96.8 94.0 75.6 96.8
RF 1 2 95.7 86.1 96.8 95.2 96.9 96.8
DT 1 3 95.4 50.8 96.9 91.0 534 96.8
RF 1 3 96.6 68.9 96.8 96.0 79.5 100.0
DT 1 4 95.1 64.1 100.0 89.8 59.5 92.3
RF 1 4 95.7 83.3 96.0 96.4 92.6 100.0
DT 2 1 88.5 31.5 96.5 84.0 44.8 88.7
RF 2 1 88.2 46.7 98.2 84.8 51.4 96.5
DT 2 3 92.3 352 88.2 88.2 352 93.9
RF 2 3 93.2 52.5 96.8 933 54.4 96.8
DT 2 4 90.1 50.0 96.2 90.0 25.0 85.7
RF 2 4 93.9 49.0 96.2 95.2 37.9 96.2
DT 3 1 85.3 65.9 98.2 92.6 38.6 100.0
RF 3 1 87.2 76.7 98.2 92.4 59.6 100.0
DT 3 2 95.4 56.4 93.8 95.6 323 96.8
RF 3 2 96.1 91.2 96.8 96.2 60.8 93.8
DT 3 4 96.1 71.4 100.0 96.6 35.7 96.2
RF 3 4 97.7 73.5 100.0 96.9 64.1 100.0
DT 4 1 92.5 42.7 94.9 91.6 50.5 87.5
RF 4 1 91.8 70.0 96.6 90.2 47.9 98.2
DT 4 2 95.6 86.1 96.8 83.2 39.7 85.7
RF 4 2 95.9 91.2 93.8 81.1 62.0 96.8
DT 4 3 94.6 52.5 96.9 90.3 48.4 96.9
RF 4 3 95.1 79.5 100.0 89.3 70.5 100.0

the first time step has no salient regions. Hence, for that
time step one could say that there is a true negative, if no re-
gions are predicted salient. It is possible that more than one
predicted true positive region will intersect with a labeled
true positive region. We count this as a single discovery of
the ground truth true positive region. For the purposes of
people searching for interesting events, this appears sensi-
ble because they would be directed to the region. False pos-
itives are counted for each region that was predicted salient
that does not intersect a ground truth salient region.

This may result in more total predictions than actual
salient regions. Overall regional accuracy is calculated as
the total sum of true negatives and true positives divided
by the total number of all four designations. This approach
does not consider the actual node intersection percentage
of predicted and ground truth salient regions. It also does
not penalize multiple predicted regions that intersect one
ground truth salient region. False negatives could each be

counted some multiple of times in order to weigh these er-
rors more than false positives. A performance metric that
takes all these issues into account will be developed as part
of future work. The regional accuracies (after the FCLib
processing) are shown in Table 3.

Salient regions are always detected without smoothing.
Smoothing removes the smaller but correct single salient
region in the second time step in 50% of the experiments,
which results in one false negative per simulation in those
cases. The smoothing operations increase regional accura-
cies by reducing the number of false positive regions (pre-
dicted regions not connected to ground truth) as the radius
is increased. The often much lower unsmoothed regional
accuracies result from false positive regions, which often
consist of one or several nodes. Smaller regions that are pre-
dicted salient are either removed or consolidated into larger
regions. Figure 4 shows an example of smoothing applied
to a single time step of simulation 1 as predicted by the en-



sembles of random forests that were trained on data of sim-
ulation 4 partitions. The leftmost image shows ground truth.
The middle image shows some of the eleven false positive
regions in this time step without smoothing. The rightmost
image is after smoothing with a radius of 2 inches and con-
tains one false positive region (not visible).

While random forests more often have a higher un-
smoothed regional accuracy than decision tree ensembles,
smoothing in vertical partition experiments removes this ad-
vantage. In general, with a smoothing radius of 2, over 98%
of the salient regions are correctly identified with either de-
cision tree or random forests ensembles.

6 Summary and discussion

Some simulations must be partitioned across multiple
processors in order to obtain results in a reasonable amount
of time. The method of breaking data into pieces is not de-
signed with data mining in mind, as it violates the usual
assumption of independent and identically distributed data
sets. In this paper we show how such data may be nonethe-
less effectively used for data mining. Our approach uses
fast ensemble learning algorithms and probabilistic major-
ity voting.

Our results from several simulations indicate that our ap-
proach has the ability to find most nodes in regions of inter-
est. In our experiments using the data from several different
runs of the canister crush simulation, the resultant predic-
tions appear more accurate (in terms of matching the physi-
cal processes in the simulation) than the training data, which
has been labeled approximately in accordance with the time
constraints placed upon experts. This provides confidence
that the algorithm is learning the underlying function which
determines which points are salient, with the overlap of un-
interesting points outweighing the very large number of un-
interesting points overall.

We evaluate how well regions of salience are found. Af-
ter smoothing the results of random forests prediction, there
were at most one false negative and/or two false positive
regions per test simulation. Overall 98% of the salient re-
gions are correctly identified. So, this is a promising result
in terms of the utility of the approach. The results indicate
that simulation developers and users would be accurately
directed to regions of interest with only occasional misdi-
rection. This has the potential for saving significant time
during debugging and use by allowing for a much improved
focus of attention on areas of interest without highly time-
consuming search.

We believe the rapid generation of ensemble classifiers
will make it tractable to predict saliency in much larger data
sets. The general problem of creating an ensemble from
data that was partitioned without regard to the effect on the

machine learning algorithm is an important practical prob-
lem that merits additional attention.
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Figure 4. Left: Ground truth as labeled in time step 18 of Simulation 4. Center: Predicted salient
regions including false positives (smaller regions) before smoothing. Right: Salient regions after
smoothing with one false positive (not visible).



