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Abstract

We experimentally evaluate bagging and six other randomization-based
approaches to creating an ensemble of decision-tree classifiers. Bagging
uses randomization to create multiple training sets. Other approaches,
such as Randomized C4.5 apply randomization in selecting a test at a
given node of a tree. Then there are approaches, such as random forests
and random subspaces, that apply randomization in the selection of at-
tributes to be used in building the tree. On the other hand boosting, as
compared here, incrementally builds classifiers by focusing on examples
misclassified by existing classifiers. Experiments were performed on 34
publicly available data sets. While each of the other six approaches has
some strengths, we find that none of them is consistently more accurate
than standard bagging when tested for statistical significance.

1 Introduction

Bagging [1], Adaboost.M1W [2, 3, 4], three variations of random forests [5], one
variation of Randomized C4.5 [6] (which we will call by the more general name
“random trees”), and random subspaces [7] are compared. With the exception
of boosting, each ensemble creation approach compared here can be distributed
in a simple way across a set of processors. This makes them suitable for learning
from very large data sets [8, 9, 10] because each classifier in an ensemble can be
built at the same time if processors are available. Their classification accuracy is
evaluated through a series of 10-fold cross validation experiments on 34 data sets
taken mostly from the UC Irvine repository [11]. In this work we use the open
source software package “OpenDT” [12] for learning decision trees in parallel.
This program has the ability to output trees very similar to C4.5 release 8 [13],
but has added functionality for ensemble creation.

Previous experimental results [14] show that each of the ensemble creation
techniques gives a statistically significant, though small, increase in accuracy
over a single decision tree. However in head-to-head comparisons with bagging,
none of the ensemble building methods was generally statistically significantly
more accurate.
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This work extends our previous work [14] by including the results for boost-
ing, using ANOVA to better understand the statistical significance of the results,
and increasing the number and size of the data sets used. We have also increased
the number of classifiers in each ensemble, with the exception of boosting, to
1000. By using a greater number of decision trees in the ensemble and larger
size data sets, our conclusions about several of the methods have changed.

2 Ensemble Creation Techniques Evaluated

Ho’s random subspace method of creating a decision forest utilizes the random
selection of attributes or features in creating each decision tree. Ho used a ran-
domly chosen 50% of the attributes to create each decision tree in an ensemble
and the ensemble size was 100 trees.

Ho found the random subspace approach was better than bagging and boost-
ing for a single train/test data split for four data sets taken from the stat log
project [15]. Fourteen other data sets were used by splitting them into two
halves randomly. Each half was used as a training set with the other half used
as a test set. This was done 10 times for each of the data sets. The maxi-
mum and minimum accuracy results were deleted and the other eight runs were
averaged. There was no evaluation of statistical significance. The conclusion
was that random subspaces was better for data sets with a large number of
attributes. Ho’s method tended to not be as good with a smaller number of
attributes and a small number of examples, or a small number of attributes and
a large number of classes. This approach is interesting for large data sets with
a significant number of attributes because it requires less time and memory to
build each of the classifiers.

Breiman’s random forest approach to creating an ensemble also utilizes a
random choice of attributes in the construction of each CART decision tree
[16, 5]. However, a random selection of attributes occurs at each node in the
decision tree. Potential tests from these random attributes are evaluated and
the best one is chosen. So, it is possible for each of the attributes to be utilized
in the tree. The number of random attributes chosen for evaluation at each
node is a variable in this approach. Additionally, bagging is used to create the
training set for each of the trees. We utilized random subsets of size 1, 2 and
blog2(n) + 1c where n, is the number of attributes.

Random forest experiments were conducted on 20 data sets and compared
with Adaboost on the same data sets in [5]. Ensembles of 100 decision trees
were built for the random forests and 50 decision trees for Adaboost. For the
zip-code data set 200 trees were used. A random 10% of the data was left
out of the training set to serve as test data. This was done 100 times and the
results averaged. The random forest with a single attribute randomly chosen
at each node was better than Adaboost on 11 of the 20 data sets. There was
no evaluation of statistical significance. It was significantly faster to build the
ensembles using random forests.

Dietterich introduced an approach which he called Randomized C4.5 [6],
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which comes under our more general description of random trees. In this ap-
proach, at each node in the decision tree the 20 best tests are determined and
the actual test used is randomly chosen from among them. With continuous
attributes, it is possible that multiple tests from the same attribute will be in
the top 20. All tests (in C4.5) must be kept to determine the best 20, which
can make this approach memory intensive when there are many continuous at-
tributes which have many values that can be used in a binary test.

Dietterich experimented with 33 data sets from the UC Irvine repository.
For all but three of them a 10-fold cross validation approach was followed. The
best result from a pruned or unpruned ensemble was reported. Pruning was
done with a certainty factor of 10. The test results were evaluated for statistical
significance at the 95% confidence level. It was found that Randomized C4.5
was better than C4.5 14 times and equivalent 19 times. It was better than
bagging with C4.5 6 times, worse 3 times and equivalent 24 times. From this,
it was concluded that the approach tends to produce an equivalent or better
ensemble than bagging. It has the advantage that you do not have to create
multiple instances of a training set.

3 Algorithm Modifications

We describe our implementation of random forests and a modification to Diet-
terich’s randomized C4.5 method. In OpenDT, like C4.5, a penalty is assessed
to the information gain of a continuous attribute with many potential splits. In
the event that the attribute set randomly chosen provides a “negative” infor-
mation gain, our approach is to randomly re-choose attributes until a positive
information gain is obtained, or no further split is possible. This enables each
test to improve the purity of the resultant leaves. This approach was also used
in the WEKA system [17].

We have made a modification to the Randomized C4.51 ensemble creation
method in which only the best test from each attribute is allowed to be among
the best set of twenty features from which one is randomly chosen. This allows
the algorithm to be less prejudiced against discrete attributes when there are
a large number of continuous valued attributes. We call it the random trees B
approach.

4 Experimental Results

Thirty-four data sets, 32 from the UC Irvine repository [11], credit-g from NI-
AAD (www.liacc.up.pt/ML) and phoneme from the ELENA project. The data
sets, described in Table 1, have from 4 to 69 attributes and the attributes are a

1On a code implementation note, we allow trees to be grown to single example leaves,
which we call pure trees. MINOBJS is set to one (which means a test will be attempted any
time there are two or more examples at a node), tree collapsing is not allowed and dynamic
changes in the minimum number of examples in a branch for a test to be used are not allowed.
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Table 1: Description of data sets attributes and size.
Data Set # attributes # continuous attributes # examples # classes

anneal 38 6 898 6
audiology 69 0 226 24
autos 25 15 205 7
breast-w 9 9 699 2
breast-y 9 0 286 2
credit-a 15 6 690 2
credit-g 20 7 1000 2
glass 9 9 214 7
heart-c 13 5 303 2
heart-h 13 5 294 2
heart-s 13 5 123 2
heart-v 13 5 200 2
hepatitis 19 6 155 2
horse-colic 22 8 368 2
hypo 25 7 3163 2
ion 34 34 351 2
iris 4 4 150 3
krkp 36 0 3196 2
labor 16 8 57 2
led-24 24 0 5000 10
letter 16 16 20000 26
lymph 18 3 148 4
page 10 10 5473 5
pendigits 16 16 10992 10
phoneme 5 5 5404 2
pima 8 8 768 2
primary 17 0 339 22
satimage 36 36 6435 7
sick 29 7 3772 2
sonar 60 60 208 2
soybean 35 0 683 19
vehicle 18 18 846 4
voting 15 0 435 2
waveform 21 21 5000 3
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mixture of continuous and nominal values. Ensemble size was 50 for the boost-
ing approach, and 1000 trees for each of the other approaches. While 1000 trees
are more than the original authors suggested, this number was chosen so that
more than enough trees were present in the ensemble. Unlike boosting, Breiman
has shown these other techniques do not overfit as more classifiers are added to
the ensemble [5].

For the random trees B approach, we used a random test from the 20 at-
tributes with maximal information gain. In the random subspace approach of
Ho, half (dn/2e) of the attributes were chosen each time. For the random forest
approach, we used a single attribute, 2 attributes and blog2 n + 1c attributes
(which will be abbreviated as Random Forests-lg in the following).

For each data set, a 10-fold cross validation was done. For each fold, an en-
semble is built by each method and tested on the held out data. This allows for
statistical comparisons between approaches to be made. Each ensemble consists
solely of unpruned trees. ANOVA was first used to determine which data sets
showed statistically significant differences at a specified confidence level. Sub-
sequently, a paired t-test was used to determine, at the same confidence level,
whether a particular ensemble approach is better or worse than bagging.

Table 2 shows the comparative results at the 99% confidence interval. All
ensemble creation techniques to the right of the bagging column in the table
utilized bagging in creating training sets. For 30 of the data sets none of the
ensemble approaches could produce a statistically significant improvement over
bagging. On two data sets, all techniques showed accuracy improvement (as
indicated by a boldface number). The (slightly) best ensemble building ap-
proaches appears to be random forests-lg which is better than bagging four
times and random forests-2 which is also better four times. Random forests-lg
is only worse than bagging once (indicated by a number in italics), while ran-
dom forests-2 is worse twice. Boosting had the least wins at two, while losing
to bagging once. Random subspaces lost to bagging four times and registered
only three wins. Random trees B and random forests-1 were better 3 times and
worse 1 time and 2 times respectively.

We can create a summary score for each ensemble algorithm by providing
1 point for a win, and 1/2 point for a tie. At the 99% confidence level the top
performing ensemble methods are random forests-lg (18.5 points) and random
forests-2/Random Trees B (18 points). All other approaches score 17.5 points
or 16.5 (random subspaces).

An interesting question is how would these approaches rank if the average
accuracy, regardless of significance, was the only criterion. Once again that
random forests-lg and random forests-2 appear the best (24.5 and 23 points
respectively). Random forests-1 on the other hand performs the worst (18.5
points). Random subspaces (21.5 points) performs much better in this study,
beating both boosting and random trees B (each with 19 points). Clearly,
utilizing statistical significance tests changes the conclusions that one would
make given these experimental results. It is worth noting that all scores are
above 17 which means they are each better than growing a bagged ensemble on
average.
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Table 2: The average raw accuracy results. Boldface indicates statistically
significantly better than bagging at the 99% confidence interval and italics means
significantly worse. Results of a Borda count are provided with higher values
signifying better performance. Summary scores are also reported.

Data set Boosting Random Random Bagging Random Random Random
Subspaces Trees B Forests-lg Forests-1 Forests-2

anneal 99.33 99.78 99.78 99.22 99.33 99.67 99.78
audiology 79.57 81.74 78.26 80.43 81.74 76.09 78.26

autos 87.12 87.60 82.31 89.02 86.14 82.79 83.29
breast-w 96.43 96.29 96.43 96.00 96.57 96.86 96.71
breast-y 68.97 73.10 74.48 71.72 72.76 74.83 74.14
credit-a 85.36 86.96 86.67 86.09 86.81 87.10 86.96
credit-g 75.10 76.70 74.20 74.60 76.90 73.70 75.90

glass 77.27 77.73 79.55 74.55 75.91 78.18 79.09
heart-c 82.90 82.26 83.55 78.39 81.94 81.61 81.94
heart-h 96.33 96.67 96.33 97.00 96.33 94.67 96.67
heart-s 96.15 93.08 91.54 94.62 93.85 93.08 91.54
heart-v 82.50 82.00 86.00 82.50 84.50 86.00 86.00

hepatitis 90.63 90.63 91.25 91.88 94.38 90.00 91.88
horse-Colic 98.38 98.38 94.59 97.03 97.57 93.78 96.22

hypo 99.87 99.91 99.91 99.81 99.94 99.46 99.91
ion 95.28 93.89 93.61 93.61 93.61 93.89 93.89
iris 94.67 94.00 94.67 94.67 94.67 94.00 94.00

krkp 99.56 95.75 98.72 99.66 99.47 97.94 99.13
labor 81.48 100.0 100.0 100.0 100.0 100.0 100.0

led-24 71.43 69.44 72.41 73.57 74.93 74.27 74.77
letter 96.74 97.03 96.44 94.90 96.84 95.66 96.81

lymph 82.67 80.00 86.67 78.67 84.00 84.00 85.33
page 96.39 97.21 97.34 97.19 97.32 97.21 97.39

pendigits 99.21 99.30 99.25 98.59 99.25 99.02 99.14
phoneme 91.46 83.70 90.37 91.42 91.26 91.02 91.35

pima 74.29 74.55 76.49 76.75 76.75 75.45 75.97
primary 39.71 53.24 49.71 49.41 51.18 50.00 50.29

sat 91.89 92.19 92.24 91.06 92.08 91.26 91.72
sick 99.10 97.54 98.73 99.05 98.99 97.91 98.60

sonar 81.43 82.38 85.24 77.14 81.90 82.38 83.81
soybean 91.59 95.80 94.93 93.19 94.35 93.91 94.78
vehicle 76.94 75.76 74.59 74.35 74.59 73.53 74.47

vote 95.23 95.45 94.77 95.91 95.91 95.00 96.14
waveform 84.21 85.27 85.55 84.01 85.01 85.59 85.41

Borda count 128 150 152 118 167 117 166

Summary
Better 2 3 3 4 3 4
Worse 1 4 1 1 2 2
Same 31 27 30 29 28 28

Score 17.5 16.5 18 18.5 17.5 18



7

To complete our investigation of the performance of these ensemble creation
techniques we list the average accuracy results over ten folds and provide a
Borda count. The Borda count [18] is calculated by assigning a rank to each of
the proposed methods (first place, second place, etc.). The first place method
obtains N points, second place takes N − 1 points, and so on, where N is the
number of methods compared. The sum of those values across all data sets is
the Borda count, as shown in Table 2, where greater values correspond to more
accurate methods.

Again we see random forests-lg and random forests-2 taking the lead, with
Borda counts of 167 and 166, respectively. Random trees B and random sub-
spaces obtain the next best scores of 152 and 150. It is difficult to say how many
points constitutes a “significant” win, however boosting (128), bagging (118),
and random forests-1 (117) certainly have a non-trivial number of points less.

5 Discussion

5.1 Random Forests and Bagging

Since the random forest approach uses bagging to create the training sets for
the trees of their ensembles, one might expect that the two algorithms share the
same wins and losses while the other methods do not. This turns out not to be
the case. On the krkp data set, random forests are statistically significantly less
accurate than bagging, as are random subspaces and random trees. Likewise in
the three cases where each version of random forests is statistically significantly
more accurate than bagging, random subspaces and random trees are also more
accurate; on two of those data sets boosting is more accurate. An interesting
experiment would be to measure the accuracy of random forests without bagging
the training set since this could lead to a decrease in the running time. Random
forests are already much faster than bagging since less attributes need to be
tested at every possible node in the tree.

5.2 Comparison Against Prior Results in the Literature

Our accuracy results compare with those published by Breiman in [5] for both
boosting and random forests. Of the 11 data sets common to each work, our
implementation of random forests-1 is more accurate eight times and our im-
plementation of boosting is more accurate seven times than what is shown in
[5]. These variations are small, possibly influenced by the use of two different
splitting criteria functions (the gini index for CART and information gain ratio
for OpenDT).

In Dietterich’s Randomized C4.5 experiments, he chose to report the best
of the pruned (C4.5 certainty factor of 10) and unpruned ensembles arguing
that the decision to prune might always be correctly determined by doing cross
validation on the training set. Of the 11 data sets for which Dietterich chose
to use unpruned trees and which appear in our paper, the OpenDT implemen-
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tation was more accurate seven times. There are some data sets for which our
unpruned ensemble is much more accurate than Dietterich’s reported pruned
ensemble (which, by transitivity, is more accurate than his unpruned ensem-
ble). OpenDT handles missing attributes as a preprocessing step, replacing
them prior to learning. C4.5 replaces missing attributes at each node in the
tree with likely values from the reduced data set at each split, and assigns a
penalty to the gain ratio of the attribute. The former method shows much bet-
ter accuracy for ensembles on some data sets, and is the reason for the large
discrepancies.

5.3 Other Ensemble Methods vs. Bagging

At the outset of the study, it was expected that one or more of these approaches
would be an unambiguous winner over bagging in terms of accuracy. This was
not the case statistically. Of the 34 data sets examined, the maximum number
of statistical significance wins was four (with one loss). While the Borda count
shows that, given several data sets, techniques such as random forests can show
an accuracy improvement over bagging, for any particular data set, this accuracy
improvement is not reliable.

There are other potential benefits aside from increased accuracy performance
though. Random forests, by picking only a small number of attributes to test,
generates trees very rapidly. Random subspaces, which tests less attributes, can
also use much less memory because only the chosen percentage of attributes
needs to be stored. Recall that since random forests may potentially split on
any attribute, it does not require any less memory to store the data set. Since
random trees do not need to make and store new training sets, they save a small
amount of time and memory over the other methods.

Within the confines of this experiment, boosting has the unique ability to
specialize itself on the hard to learn examples. Unfortunately this makes the
algorithm highly susceptible to noise. As several of the data sets used here are
known to be noisy, boosting is at a disadvantage in these experiments. If led-
24, a synthetic data set with artificial noise, is removed from the experiment,
boosting would have zero losses at the 99% confidence interval.

Finally, random trees and random forests can only be directly used to create
ensembles of decision trees. As with bagging, boosting and random subspaces
could be utilized with other learning algorithms such as neural networks.

6 Summary

This paper compares several methods of building ensembles of decision trees. In
particular a variant of the randomized C4.5 method introduced by Dietterich [6]
(which we call random trees B), random subspaces [7], random forests [5], Ad-
aboost.M1W, and bagging are compared. All experiments used a 10-fold cross
validation approach to compare average accuracy. The accuracy of the various
ensemble building approaches was compared with bagging using OpenDT to
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build unpruned trees. The comparison was done on 34 data sets with 32 taken
from the UC Irvine repository [11] and the others publicly available.

The ensemble size was 1000 trees for each of the ensemble creation techniques
except boosting which used 50. The ensemble size of boosting was chosen to
match what had been used in previous work [5]. The ensemble size of the
remaining techniques was chosen to allow allow plenty of classifiers in the en-
semble. Statistical significance tests were done to determine whether each of
the ensemble methods was statistically significantly more than or less accurate
than bagging.

None of the approaches was unambiguously always more accurate than bag-
ging. Random forests generally have better performance, and are much faster
to build. The accuracy of the random subspace approach fluctuated, showing
mediocre results statistically, but fairly good results generally. It is notable that
a random forest built utilizing only two randomly chosen attributes for each test
in the decision tree was among the most accurate classification methods.
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