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Abstract

We experimentally evaluate randomization-based ap-
proaches to creating an ensemble of decision-tree classi-
fiers. Unlike methods related to boosting, all of the eight
approaches considered here create each classifier in an en-
semble independently of the other classifiers. Experiments
were performed on 28 publicly available datasets, using
C4.5 release 8 as the base classifier. While each of the other
seven approaches has some strengths, we find that none of
them is consistently more accurate than standard bagging
when tested for statistical significance.

1 Introduction

This paper compares eight methods of creating an en-
semble without incrementally focusing on misclassified ex-
amples as in boosting [8, 14]. Bagging [4], three variations
of random forests [5], three variations of randomized C4.5
[9] (which we will call by the more general name “random
trees”), and random subspaces [10] are compared. Their
classification accuracy is evaluated through a series of 10-
fold stratified cross validation experiments on 28 data sets.
The base classifier is a modification of the C4.5 release 8
[13] that we call USFC4.5. USFC4.5 produces identical
output to C4.5 release 8 with default settings, but has signif-
icant added functionality. Each ensemble creation approach
compared here can be distributed in a simple way across
a set of processors. This makes them suitable for learning
from very large data sets [11, 2, 7].

The experimental results show that the random tree ap-
proaches and random forests methods gave a statistically
significant, though small, increase in accuracy over building

a single decision tree. However, in head-to-head compar-
isons with bagging, none of the ensemble building methods
was generally significantly more accurate than bagging.

2 Ensemble Creation Techniques Evaluated

Ho’s random subspace method of creating a decision for-
est utilizes the random selection of attributes or features in
creating each decision tree. Ho used a randomly chosen
50% of the attributes to create each decision tree in an en-
semble. The ensemble size was 100 trees. Ho found the ran-
dom subspace approach was better than bagging and boost-
ing for a single train/test data split for four data sets taken
from the stat log project [3]. Fourteen other data sets were
split into two halves randomly, for train and test. This was
done 10 times for each of the data sets. The maximum and
minimum accuracy results were deleted and the other eight
runs were averaged. There was no evaluation of statistical
significance. The conclusion was that random subspaces
was better for data sets with a large number of attributes.
This result, and some results from other papers listed below,
conflict with our conclusions. We discuss those conflicts in
Section 5.

Breiman’s random forest approach to creating an ensem-
ble also utilizes a random choice of attributes in the con-
struction of each CART decision tree [6, 5]. However, a
random selection of attributes occurs at each node in the
tree. Potential tests from these random attributes are evalu-
ated and the best one is chosen. So, it is possible for each
of the attributes to be utilized in the tree. The number of
random attributes chosen for evaluation at each node is a
variable in this approach. Additionally, bagging is used to
create the training set for each of the trees that make up
the random forests. In [5], random forest experiments were
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conducted on 20 data sets and compared with Adaboost on
the same data sets. Ensembles of 100 trees were built for the
random forests and 50 for Adaboost. For the zip-code data
set 200 trees were used. A random 10% of the data was left
out of the training set to serve as test data. This was done
100 times and the results averaged. The random forest with
a single attribute randomly chosen at each node was better
than Adaboost on 11 of the 20 data sets. There was no eval-
uation of statistical significance. It was significantly faster
to build the ensembles using random forests. In the exper-
iments in this paper, we consider random subsets of size 1,
2 andblog2(n) + 1c wheren, is the number of attributes.

Dietterich introduced an approach which he called ran-
domized C4.5 [9], which comes under our more general de-
scription of random trees. In this approach, at each node in
the decision tree the 20 best tests are determined and the ac-
tual test used is randomly chosen from among them. With
continuous attributes, it is possible that multiple tests from
the same attribute will be in the top 20. All tests (in C4.5)
must be kept to determine the best 20, which can make this
approach memory intensive. Dietterich experimented with
33 data sets from the UC Irvine repository. For all but three,
a 10-fold cross validation was done. The best result from a
pruned (certainty factor of 10) or unpruned ensemble was
reported. Test results were evaluated for statistical signifi-
cance at the 95% confidence level. It was found that ran-
domized C4.5 was better than C4.5 14 times and equivalent
19 times. It was better than bagging with C4.5 6 times,
worse 3 times and equivalent 24 times. From this, it was
concluded that the approach tends to produce an equivalent
or better ensemble than bagging. It has the advantage that
you do not have to create multiple instances of a training
set.

3 Algorithm Modifications

We describe our implementation of random forests and
a modification to Dietterich’s randomized C4.5 method. In
the random forest implementation, in the event that the at-
tribute set randomly chosen provides a negative informa-
tion gain, our approach is to randomly re-choose attributes
until a positive information gain is obtained. This enables
each test to improve the purity of the resultant leaves to at
least some degree. The same approach was also used in the
WEKA system [15].

We have made a modification to the randomized C4.51

ensemble creation method in which only the best test from
1On a code implementation note, we have added a –pure flag which

allows trees to be grown to single example leaves, which we call pure trees.
MINOBJS is set to one (which means a test will be attempted any time
there are two or more examples at a node), tree collapsing is not allowed
and dynamic changes in the minimum number of examples in a branch for
a test to be used are not allowed. All unpruned trees were built with the
pure flag.

each attribute is allowed to be among the best set (of a given
size) from which one is randomly chosen. We will call it
the random tree B (RTB) approach. A slightly more mem-
ory efficient perturbation of this approach is to keepsqrt(n)
best attributes to randomly choose. In the rest of the paper,
we will call our ensemble creation method RTB and Diet-
terich’s original method random trees.

4 Experimental Results

Experiments were done on 28 data sets; 26 from
the UC Irvine repository [12], credit-g from NIAAD
(www.liacc.up.pt/ML) and phoneme from the ELENA
project. The data sets have from 4 to 69 attributes and the
attributes are a mixture of continuous and nominal2 values.
The ensemble size was 200 trees for the Dietterich and RTB
approaches. There were 100 trees used in the random for-
est approach and in the ensemble for the random subspace
approach. The size of the ensembles was chosen to allow
for comparison with previous work (and corresponds with
those authors’ recommendations).

For the RTB approach, we used a random test from the
20 attributes with maximal information gain and a random
test from the square root of the number of attributes, which
of course will vary with the size of the attribute space. In
the random subspace approach of Ho, exactly half (dn/2e)
of the attributes were chosen each time. For the random
forest approach, we used a single attribute, 2 attributes and
blog2 n + 1c attributes (which will be abbreviated as Ran-
dom Forests-lg in the following).

For each data set, a 10-fold cross validation was done.
For each fold, an ensemble is built by each method and
tested on the held out data. We also built a single C4.5 tree,
with default pruning, on each of the folds. The accuracy of
each ensemble method is compared against the single de-
fault pruned decision trees. The ensembles consist solely of
unpruned trees.

For these experiments, with 8 classification methods and
28 data sets, there are 224 comparisons, and so about 11 er-
rors in the comparisons at the 95% confidence level. Hence,
we look at statistical significance at the 99% level, as shown
in Table 1. Compared to C4.5 a random forest ensemble
created usinglog2 n + 1 attributes is very good and RTB-
20 is the best by a rather small increment. Random sub-
spaces ties for the most times as statistically significantly
more accurate than C4 .5, but is also less accurate the most
times. Several ensemble algorithms are very close and hard
to pick among. We can create a summary score for each
ensemble algorithm by providing 1 point for a win, and 1/2
point for a tie. Using this scoring approach, the random for-
est approaches have a score of 16.5 for 2 and lg attributes

2As done by Dietterich, the attribute physician-fee-freeze has been left
out of the voting data set to make it more difficult.
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Table 1. Statistical significance at 99% level:
+ indicates more accurate, - indicates no dif-
ference, X means less accurate than C4.5.

Data Set RTB RTB RT RS Bag RF RF RF
sqrt 20 ging 1 2 lg

anneal - - - - - - - -
audiology - - - - - - - -

autos - - - - - - - -
breast-y - - - - - - - -
breast-w - + + + - - - -

glass - - - + - - + -
heart-v - - - - - - - -
heart-s - - - - - - - -
heart-h - - - - - - - -
heart-c - - - - - - - -

iris - - - - - - - -
hepatitis - + - + - + + +

hypo - - - - - - - -
horse-colic - - - - - - - -
waveform + + + + + + + +

voting - - - - - - - -
vehicle - - - - - - - -
soybean - - - - - - - -
sonar + + + + - + + +
sick - - - X - X - -

primary - - - - - - - -
phoneme - + - X + + + +
lymph - + - - - - - -
labor - - - - - - - -
krkp - - - X - X - -

credit-g + - + + + + - +
credit-a - - - - - - - -
pima - - - - - - - -

Summary
Better 3 6 4 6 3 5 5 5
Similar 25 22 24 19 25 21 23 23
Worse 0 0 0 3 0 2 0 0
Score 15.5 17 16 15.5 15.5 15.5 16.5 16.5

RT = Random Trees, RS = Random Subspaces, RF = Random Forests.

with RTB-20 at 17. On the other hand, most of the others
amassed 15.5 points.

An interesting question is how would these approaches
rank if the average accuracy, regardless of significance, was
the criterion. In this case random forests-lg and bagging ap-
pear the best (22.5 and 21.5 points respectively). The other
random forest approaches are at 21 points with random trees
and random subspaces at 20. Now, RTB-20 is the weakest
approach at 18.5 points. Clearly, utilizing statistical signif-
icance tests changes the conclusions that one would make
given these experimental results. It is worth noting that all

Table 2. Pairwise win-lose-tie comparisons
with significance at the 99% level.

wins-loses-ties C4.5 RTB-20 Random
row versus col Forests-lg

Bagging 3-0-25 1-1-26 0-1-27
Random Forests-lg 5-0-23 3-1-24

RTB-20 6-0-22

scores are well above 14 which means they are each better
than growing a single pruned tree on average.

At the outset of the study, it was expected that one or
more of these approaches would be an unambiguous winner
over bagging in terms of accuracy. This was not the case,
despite the earlier observation that, for instance, RTB-20
and random forests-lg seem to be better than a single C4.5
tree more often than bagging. When the two most com-
petitive techniques are compareddirectly to bagging and
each other (using the same methods for evaluating statisti-
cal significance at 99%), the results are as in Table 2. There
we see bagging proves equivalent to RTB-20 and has one
loss compared to random forests-lg. It was shown to be
slightly worse than random trees (randomized C4.5) in pre-
vious work.

5 Discussion

Since the random forest approach utilizes bagging to cre-
ate the training sets for the trees of its ensembles, one might
expect that its accuracy was less than C4.5 on some of the
same data sets for which bagging was less accurate. We
found that random forests with one, two orlog2n + 1 ran-
dom attributes to choose from was able to outperform C4.5
when bagging was worse two times for the first two ap-
proaches and three times with random forests-lg attributes.
It was better than bagging was when compared with C4.5
twice when using two attributes. There were two cases in
which random forests were worse than C4.5 when a bagged
ensemble was better.

All the data sets used here, except Pima, were also used
in the original randomized C4.5 paper [9], which found no
losses to C4.5 at the 95% level. Our study finds only one
loss. However, the previous study finds more wins in the
(14 of 33 data sets) than we do. The difference could be due
to our use of release 8 of C4.5, which is better at handling
continuous valued attributes. Another big difference is that
we utilized only unpruned trees. Dietterich chose the best
of the pruned (certainty factor of 10) and unpruned trees.

In the random forests work, the ensembles obtained were
compared with those obtained from Adaboost. On 19 data
sets it was better 11 times and worse 8 times. There was no
statistical test used to determine if the wins and losses were
significant. Boosting is usually better than bagging unless
there is noise in the data set [1]. We have nine data sets in
common. It is difficult to draw direct conclusions, but this
approach is one of the most competitive, which one would
expect given the results in [5].

There are five data sets in common from the random sub-
spaces paper [10]. In the experiments reported in the origi-
nal paper random subspaces was better on all of these data
sets. Here, at the 99% confidence level it is better once,
worse once, and equivalent three times. We do not know
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what release of C4.5 was used. However, a twofold cross
validation was done 10 times and the outliers were removed
(highest accuracy and lowest accuracy) with the remaining
8 averaged. Using a twofold cross validation the training
set will be significantly smaller. The “data starvation” in
the training set probably hurts the accuracy of the single
tree more than it hurts the accuracy of the ensemble. Other
work has shown that ensembles can recover accuracy with
reduced training set sizes [7].

Random subspaces was not expected to do well when
there are a small number of attributes. It’s performance is
less than a single classifier for Phoneme which has just five
attributes and this was not unexpected. Also, it is no better
than a single classifier on the Iris and Pima data sets which
have only 4 and 8 attributes respectively. So, it was perhaps
a lower performer partly due to the data sets chosen.

There are some computational advantages to random
trees and random forests. Utilizing random trees it is not
necessary to re-sample the training data in creating the indi-
vidual trees. Random forests use a relatively small number
of attributes in determining a test at a node which makes the
tree faster to build.

It is possible to use the out of bag error to decide when
to stop adding classifiers to a random forest ensemble or
bagged ensemble. A stopping criterion of the error leveling
off suffices. This, perhaps, would boost the performance of
the random forests on the data sets utilized here.

Random trees and random forests can only be directly
used to create ensembles of decision trees. The random sub-
space approach, which is less competitive than bagging, but
faster because it uses less attributes, could be utilized with
other learning algorithms such as neural networks.

Given the results presented here, it is perhaps worth-
while to explicitly consider the question — what would
constitute a convincing experimental demonstration that a
new technique achieves a general improvement in accuracy
over simple bagging? Certainly the experiments should in-
volve a “large” number of different datasets, say, in the
range of 30 or more. Also, the comparison on each in-
dividual dataset should be in terms of whether or not the
new technique achieves a statistically significant increase in
accuracy. For this point, a paired t test on 10-fold or 20-
fold cross-validation seems appropriate. The issue then be-
comes, on what fraction of the datasets should the new tech-
nique achieve a statistically significant increase in accuracy
in order for us to accept that it offers a general improvement
over bagging?
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