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Tensor approximations
and computation of inverse matrices



Practical problems (esp. using integral equations)
may lead to matrices which are

e huge in size (up to 10° ~ 10°)

e with no noticable structure

The only way is to treat such matrices implicitly —

via approximation by some well-structured matrices.

The key idea of structures is data-sparsity.
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TWO-LEVEL MATRIX

Au=f, A=]la]"], p*xp’

Entry afjm is on Row (¢ — 1)p 4+ 7 and Column (k — 1)p + m.

Components w;j, frm occupy positions (¢ — 1)p+ 34, (K —1)p+m

in the vector-columns v = [u;;], f = [fim]-

DEFINITION OF TENSOR (KRONECKER) PRODUCT
[cij] X [drm] = [bI7], b = cijdim (B=CxD)

REARRANGEMENT OF ENTRIES: V ([a’?m]) = [ai™]

1)
(This is not permutation.)

IMPORTANT OBSERVATION: (Van Loan - Pitsianis)
B=CxD <= V(B)=vec(C)(vec(D))"



EXAMPLE:

U ” V11 V12 Vi3
11 U12
U_[u ” ] V = V21 V22 Va3
21 U2
U31 V32 V33
U1l
U1
VU X V)= " [ i1 va1 U3 vig v Uz viz Vo3 V33 |-
12
U922

STATEMENT: V (kz_jl Uy X Vk) = lé(VeC(Uk))(VeC(V}c»T

r

V(A) =) (vee(Uy)) (vee(Vy))"

k=1

A—zT:UkXV}C
k=1

F F

The best Kronecker approximation (in Frobenius norm)
can be computed by the standard SVD method applied to V(A).



TENSOR-WAVELET SOLVER FOR Au = f
(1) Approximate A by B in the tensor format

B=) Ur®Vi, |IB-Alr<ellAllp
k=1

U, Vj. are of order p (A is of order n = p?). r is called tensor e-rank.

(2) Apply a Discrete Wavelet Transform (DFT) to each tensor factor:
P,=WUW?!, Q. =WV,W!, 1<k<r. (W isthe DFT matrix.)
Sparsify Py and @}, using a threshold 7 = 7(e, Py, Qk):

C=WTeW DWeW)~ B, D=> PFeQ;, ||B-C|r<ell
k=1

(3) Construct a preconditioner H~! for A. Options:

— Incomplete scaled block-circulant preconditioner.

— Appoximations to the inverse matrix (by the Newton method).

(4) Apply GMRES for H~'Cy = H™' f and set u ~ y.



TENSOR APPROXIMATIONS

e Use tensor format when e-rank r < n. Then B is stored in 2rn < n? units.

e In many cases r = O(log” nlog” e 1):
— E. E. Tyrtyshnikov, Tensor approximations of matrices generated by asymptotically smooth func
Sbornik: Mathematics, Vol. 194, No. 6 (2003), pp. 147-160.

— E. E. Tyrtyshnikov, Kronecker-product approximations for some function-related matrices, Linear A
Appl., 379 (2004), 423-437.

— W. Hackbusch W., B. N. Khoromskij, E. E. Tyrtyshnikov, Hierarchical Kronecker tensor-product ap;
mations, Max-Panck-Institut fiir Mathematik in den Naturwissenschaften, Leipzig, Preprint No. 35, 2

e Efficient construction of low-tensor-rank approximations is provided by ncomy
cross approximation using only O(r) rows and O(r) columns of A.
— S.A.Goreinov, E.E.Tyrtyshnikov, and N.L.Zamarashkin, A theory of pseudo-skeleton approximations, I

Algebra Appl. 261: 1-21 (1997).

— E. E. Tyrtyshnikov, Incomplete cross approximation in the mosaic-skeleton method. — Computing, 6:
4 (2000), 367-380.

— S. A. Goreinov, E. E. Tyrtyshnikov, The maximal-volume concept in approximation by low-rank mat
Contemporary Mathematics, Vol. 208, 2001, 47-51.

— J. M. Ford, E. E. Tyrtyshnikov, Combining Kronecker product approximation with discrete wavelet, 1
forms to solve dense, function-related systems, SIAM J. Sci. Comp., Vol. 25, No. 3 (2003), 961-981.

— M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of collocation matrices, Computin
1-24, 2003.

e Matrix-by-vector complexity is reduced by wavelet sparsification of the tensor
tors. (Alternatives can use profile-low-rank or block-low-rank structures.)



MOTIVATION: numerical examples

a;; = f(zi, 2j),

EXAMPLE 1. f(z',2) = 1/p,

Definition of r:

Zly oo

, XN € [0, 1]2,

N =n?

p=+/(2 =22+ —y)?

the smallest such that ||A — A,||r < ¢||A||F.

n=20 (N =400)
F=1/p B 1072 1074 1076 108 10710 10712
uniform T 4 7 9 11 13 15
grids e 16-107%13-107°|5-107"|5-107"|3-107H|7-10714
f=1/p e | 107 | 100* | 107® | 10°® | 1071 | 10712
nonuniform 5 9 13 16 20 24
grids e |7-1073|7-107°|4-1077|7-10?|5-10"11|3.1071
EXAMPLE 2. Other functions f: uniform and nonuniform grids

foo et 1/e’ |1 \/plogp|  f  [1/p7|1/p°|1/\/p|logp
e=10"%| 7 6 7 7 le=10"%] 8 6 8 8
e=10"12| 14 | 14 14 15 [e=10"12| 23 | 22 23 22




SEPARATION OF VARIABLES
LOW-RANK APPROXIMATIONS: f(z1,%2; y1,y2) = > wi(x1, x2)vi(y1, Yo)
i=1

TENSOR APPROXIMATIONS: f(@1, 295 y1,92) = D i@, y1)vi(w2, y2)
i=1
FUNCTION APPROXIMATION THEOREM.

o f=(u,v) (u=1z1—y1,v=uas—y) is an asymptotically smooth function:

1 g and ¢,t > 0: |% F| < ctrtP2 (py+py)! (C+n?)opp)/20 (2 4 2 > (

any integer pi, ps > 0.
o [T, = [-1,1]°\(=h,h)?, O0<h<1.
o< y< 1L
— Vp=12, ... 3JF.(u,v)= F(u,v) such that
r < (co+c logh™p,
|F(u,v) — Fr(u,v)| < e 7° (u® + 0292, (u,v) €I,
where ¢y, ¢; and ¢y are positive constants depending on 7.

e E. E. Tyrtyshnikov, Kronecker-product approximations for some function-related matr
Linear Algebra Appl., 379 (2004), 423-437.

e E. E. Tyrtyshnikov, Tensor approximations of matrices associated with asymptotically sm
functions, Sbor. Math., Vol. 194, no. 6, pp. 147-160 (2003).



POTENTIAL FLOW AROUND THIN AIRFOIL

8<I>
AP =0, zell =0, 1]x]0, 1]; I —V,, x € 0ll; ® VO -0, z—
n

Prandtl equation:

/ / [(x — )2 ?J) dzdy = F(zo,y0) ( = V.(20,0,0) ).

y yo) ]3/2

Method of discrete vortices:

~ & 17 (a:,y) S (xi—la xZ) X (yj—la

— — otherwise.
1=1 j=1

Au = .f: €:1 ? 1 uzg km = <x0k7y0m>7 1 S k,m S P,

- / /yj dzdy
a. . = —
Y zio1 Jyj— [(@ — Tok)? + (Y — Yom)?]?/2

\/($0k — Zi—1)? + (Yom — Y;)? " \/(IEOk — 23)% + (Yom — ¥;)?
($01c - $i—1)(y0m - yj) (330k - xi)(yOm - yj)
\/(fEOk — ;)2 + (Yom — Yj—1)? \/(%k — Zi—1)? + (Yom — yj—l)Q.

- +
(%k - »Tz’)(ZUOm - yjfl) (ka - xifl)(yOm - yjfl)




STABILITY

Diagonal entries of A are positive, and off-diagonal are negative.
A is diagonally dominant.

sz T / / [( — zor)? i?ff — Yom)? PP

i=1 j=1

_ \/x%k + (Yom — 1)? \/(fEOk —1)2 4+ (yom — 1)?
Zok (1 — Yom) (1 — zok) (1 — Yom)
\/(ka - 1)2 + ygm + \/x(2)k + y(2)m
(1 - UCOk)yOm ZokYom

+ = h(:v()k, yom) > 0.

Function h(z,y) attains minimal value 8v/2 at (3, 3).
The eigenvalues of A lie in the union of the Gershgorin disks

{z : lakm — 2| < agg — h(wor, yom) < agy — 8v/2}.

Hence,

Al > 8V2.

If A is symmetric (uniform grids) then

1
A, < —.
|| ||2_8\/§



CONVERGENCE FOR UNIFORM GRIDS (I.Lifanov, L.Poltavsky)
U = Upllpyqy = 0, p— o0

Uniform convergence away from OII in the distance ¢:

|U(330k7 yOm) — Up(ilf()k, yOm)| < A5| lnh|9/4h1/4—e

0<e<1/4, h = 1/p is the step-size.



TYPES OF GRIDS

& Uniform grid:
zo; = yoi = (i — 0.5)/p,

& Non-uniform Chebyshev grid:
r;=y; = (1 — cosﬂ)/Q,
p

zo; = Yoi = (1 — cos

(i — 0.5)

0,...,p,
1=1,...,p.
ZZO?' '7p7

)/2, i=1,.

cy P



WHY INVERSE MATRICES?

e Nonstationary flow problems require to solve Au = f for many different f.
Thus, we need a convenient approximation to A~
(with small storage and matrix-by-vector complexity).

e A rougher approximation to A~! may serve as a preconditioner.

e For uniform grids, A is doubly Toeplitz.
In this case A1 can be dealt with via the Gohberg-Heinig formulas.

BUT: they still contain O(n*?) parameters!

For non-uniform grids, A~! possesses no explicit structure.



NEWTON METHOD FOR INVERSE MATRICES (cf Hotelling and Sch

Consider nonlinear equation
PX)=A-X1=0
and solve it by the Newton method with the kth iteration of the form
(@' (Xp-1))(Xk — Xp-1) = —P(Xp-1).

DX +0X)—P(X)=X"1-(X+6X)'=XT15X (X +6X)! =
(¥(X_)(6X) =X, X X, = Xp—Xpo1=—Xp1(A— X)Xy -

X =2Xp_1 — Xp_1AX|

Set R, =1 — AXk, then Ry 1 = R]% =
Quadratic convergence if p(Ry) < 1 (p is spectral radius).

Initial guess can be Xy = aA* for an appropriate a > 0.
Then ||A™! — Xy||o/[|A7!||2 < & with the number of iterations as much as

1
10g2(62 + 1) + log, In — (c is the spectral condition number for A).
€



NEWTON METHOD WITH APPROXIMATIONS

Let R(X) be a nonlinear Lipschitz operator (on n X n matrices):
I(X = R(X)) — (v — ROV))|| < M|IX — V|
Say that R(X) is an approximation of X.
Transform X 1 = R(Z;_1) to X = R(Zy) (for some Z;_1 and Zj):

Zr =2Xp 1 — Xp_1AXg_1, X = R(Zg) (

THEOREM. Assume that

R(A =41
Then for any initial guess Xy = R(X,) sufficiently close to A™!, the matrices
in (%) converge to A~! quadratically:

A7 = X)) < (L4 M)A [[A™ = X2, k=1,2,... .

Proof. (A) [[Xi— Zk|| = [|R(Zk) — Zkl| = [|R(Zk) — R(A) + A = Z|| < M||Z,— A7,

By the triangle inequality, ||[A™" — Xi|| < [[A7' = Zi|| + || Zk — Xk|| < (14 M)||A™" — Z]|.

Then, (%) implies A™' — Zy = (A7 — Xp—1) A(A™" — Xj_1). Hence, (B) ||[A7' = Z|| < [JA|[[|A7" = Xi—1]|
Put (A) and (B) together.



IMPORTANT EXAMPLE OF R(A)

Let || - || be any unitary invariant norm (spectral, Frobenius, etc.) and I1,(A) the
r-rank approximation:

praa(A) = A TL(A)| = min [|A—B||.

rankB <r

Let L be a linear invertible operator on n X n matrices. Fix some r and define

R(A) = L7H(I1,(L(A))).
Lipschitz property of R:

I1R(X) = RY)I| < [IL7T(LX) = TL(LY)]| < [ILTILI X =Y

Low-tensor-rank approximations fit this framework:
A=laf", 1<ijikm<p = L(A) =[], b"=dj"
Tensor rank of A coincides with rank of L(A). (Van Loan - Pitsianis)

Remarkable generalizations of Toeplitz (Hankel, Cauchy etc.) matrices are all related with
rank of L(A) = AU — V A for special matrices U, V. Our theorem generalizes a result obta
for this particular case of L(A):

e V. Y. Pan, Y. Rami, Newton’s iteration for the inversion of structured matrices, Structured Matrices: F
Developments in Theory and Computation (Eds. Bini D.A., Tyrtyshnikov E.E., Yalamov P.), Nova Sc
Publishers, Huntington, New York, 2001, 79-90.



TRUNCATED NEWTON IN THE CASE A~! =~ R(A™1)
Now e = ||[A — R(A™Y)|| # 0.

12k = Xl < M| Ze = A7 + ||A7" = R(ATY]]
Set ¢ = (14 M) ||A]|. Then the values §; = ||A™! — X|| satisfy

5k~ S 65]%_1 + €.

THEOREM.
Let m be the mazimal index such that \/e/c < §x_1 for all1 < k < m. If2cdy -

then the Newton with approrimations provides quadratic decrease of errors on
iterations 1 < kK < m:

205k S (265k_1)2,
and finally 6,, < 2¢.

Proof. +/¢/c < §p_1 implies ce < (cdp—1)2. Hence, cd < (cdp—1)? + ce < 2(cdp—1)>.



IMPROVING EFFICIENCY OF NEWTON

1 T2 1 T2
M'=) Al®@B], M=) A@Bl. = MM =) > (AA})e (BB}
i=1 i=1 i=1 j=1

Recompression (a lower-rank approximation to a low-rank matrix)

Xp=R(Xx), || Xk — Xillr < el|Xil|F

If tensor e-ranks of A and A™! are ~ 15 — 20, then (as X} ~ A™!) each Newton iteration inv
~ 200 products of sparse matrices of order p. For reduction of complexity consider the follo
modification:

Xy = X312 = X31), Vi = Y1 (2 — X9), k=1,2,...,
where Yy = I and X is a nonsingular matrix such that p(I — Xj) < 1. Then
lim X =1, klim Vi = X, (Since Xz11 = XoY%.)
—00

k—oo

Let Abes.p.d. = Take Xo=ad, a <2/[|All. = [I-Xll<1 = lmY; = 4
—00

Our modification of the truncated Newton:

X = R(Xj—1(21 — Xj—1)), Yi = R (Yip1(2 — X3—1)), k=1,2

9 IR

Since X — I, their tensor ranks become small. So the method is self-accelerated.



COMPUTATION OF INVERSE MATRICES: numerical results

n=p? 4096 16384 65536 262144
€ 1073 107° 107 107°
Tensor rank of A 8 8 9 10
Inversion time 2.68 sec | 15.39 sec | 1.47 min | 7.29 min
Number of iterations 7 8 9 10
Tensor rank of A~} 14 15 15 15
Residual 4-10%] 3-107% [1.5-107* [ 1.1-107*
Case of uniform grids
n = p? 4096 16384 65536
€ 107° 107 1073
Tensor rank of A 15 16 18
Inversion time 18.1 sec | 1.4 min | 10 min
Number of iterations 12 15 16
Tensor rank of A1 21 21 21
Residual 8-10°[4-10°[8-10 2

Case of non-uniform Chebyshev grids

Compare the orthodox and modified Newton:
for uniform grids with p = 256 (n = 65536), the orthodox Newton has taken 12 iterations

to achieve
|AX}, — I||p = 4.88-1073.

It has taken ~ 4.5 min, which is about 3 times longer than the modified Newton’s time.



Choose r.h.s. to be the sum of the matrix columns 1, 5, 10.

TIMINGS FOR THE TENSOR-WAVELET SOLVER

n 16129 65025 261121 1046529
r 11 12 12 13
€ 84-107%[64-1078] 94-1077 [1.9-10"
Matrix-by-vector time 0.05 sec | 0.28 sec 1.43 sec 7.6 sec
Number of iterations 17 21 22 22
Construction of preconditioner | 1.8 sec 7.2 sec 29.1 sec 1.9 min
Solution time 2.3 sec 7.9 sec 41.6 sec 3.3 min
Relative error 31-10°[58-10°%[193-10°|1.1-10°

Using block-circulant-scaled preconditioner. Uniform grids.

n

16129 65025 261121 1046529
r 20 22 22 23
€ 83-1077 [6.0-10%| 98-10® [9.4-10°8
Matrix-by-vector time 0.09 sec 0.43 sec 2.08 sec | 13.02 sec
Number of iterations 17 17 19 20
Construction of preconditioner 1.8 sec 7.2 sec 29.1 sec 1.9 min
Solution time 2.9 sec 8.6 sec 47.9 sec 4.8 min
Relative error 1.66-107°[22-107° [ 1.34-107° | 1.1- 1075

Using block-circulant-scaled preconditioner. Chebyshev grids.



APPROXIMATE INVERSE PRECONDITIONERS VIA NEWTO

Matrices A are approximated in the tensor-wavelet format with accuracy of 1077,

The Newton accuracy: 107> (uniform grids) and 1073 (Chebyshev grids).

n 16129 | 65025 | 261121
Construction of preconditioner | 18 sec | 99 sec | 342.3 sec
Number of iterations 3 3 4

Solution time 0.4 sec | 2sec | 13.5 sec
Uniform grids
n 3969 | 16129 | 65025
Construction of preconditioner | 18 sec | 84 sec | 737 sec
Number of iterations 3 3 )
Solution time 0.2 sec | 0.9 sec | 6.6 sec
Chebyshev grids

Incomplete Kronecker Product precondtioner - IKP(r):

construct approximate inverses to rougher approximations to A
(of a smaller tensor rank 7).

r 1 2 3 5
Construction of preconditioner | 17 sec 30 sec 41 sec 58 sec

Number of iterations 33 15 10 8
Solution time 82.1 sec | 39.8 sec | 27.7 sec | 22.2 sec

Results with IKP(r), p =511, n = 261121. The Newton accuracy is ¢ = 10~




EXPERIMENTAL CONVERGENCE

As “exact” solution, use that for p = 511. To trace how the convergence rate depends o

consider the Lj-norm error in the double logarithmic scale.

210 -

-11

1 1 1 1 1
1 2 3 4 5 6 7
Log(p)

Figure 1: Li-norm error vs p. Uniform grids: * . Chebyshev grids: x . On z: Inp, on y: In((||lu — upl|r,/||up

Numerical results support the following hypotheses:
(Uniform grids) ||u — up||z, < Cih||uy||L, (Chebyshev grids) ||u — up||z, < Coh?||uyl]

Numerical evaluation of the constants yields

Cy = 1.64,Cy = 1.06.



EXPERIMENTAL POINTWISE CONVERGENCE

Figure 2: Pointwise error for uniform grids: p = 63,127,255,511



EXPERIMENTAL POINTWISE CONVERGENCE

Figure 3: Pointwise error for Chebyshev grids: p = 63,127,255

e [. V.Oseledets, E. E. Tyrtyshnikov, Approximate inversion of matrices with solution of
hypersingular integral equation, J. Comput. Math. and Math. Physics, to appear.



NON-STANDARD WAVELET TRANSFORMS (nonuniform grids)
Given a grid z; (i = 1,...,n+k+ 1) and asubgrid z; (i =1,..., N+ k+ 1)
N < n, introduce B-splines of order k:
Bi(x) = [w. . iy —2)k, i=1,...,m, 2, if 2> 0,
(2)+ =

~ ~ ~ . 0, otherwise
Bi@) = & i Fanly — o)k, i=1,...,N.

~

Define V and V as the spans of B; and EZ = VcCcV = B; =) 1risBs.

(r;s are called refinement coefficie

Take any space W (wavelets) such that V 4+ W =V and “improve” it using
the lifting scheme of Sweldens:

Ji:ZﬁisBs_ Z C\éijgj, i:1,...,n—N.

The lifting coeflicients «;; must provide m vanishing moments:

/Jixpda::(), p=20,...,m. (

For consistency set jmar = Jmin + M.



THEOREM. (1. Oseledets)
The lifting coefficients satisfying (M) read

Qjj = Zﬁis[ﬂii; o Tigg) Py(2),
where P;(z) is a polynomial of degree m + k + 1 such that

QJ<§7‘)7 jmin S r S ja

0, 1<7r<Jmax+k+1,

~ ~ ik ~

(xj - CUJ'-|-/*€-|-1> Hgij+1(x - xl)a k=1,

gi(z) =4 o
’ (.Tj—.ili'j_|_1>, k= 0.

Pj(?’f?“) -

e J. M. Ford, I. V. Oseledets, E. E. Tyrtyshnikov, Matrix approximations and solvers using
sor products and non-standard wavelet transforms related to irregular grids, Rus. J. Nu
Anal. and Math. Modelling, Vol. 19, No. 2 (2004), 185-204.

e 1. V. Oseledets, Application of divided differences and B-splines to construction of fast dis
wavelet-like transforms on irregular grids, Math. Notes, in press (2004).



ALGORITHM.

Given
eagrid z;, :=1,...,n+k+1,
e asubgrid z;, i=1,...,N+k+1,
e arrays Jmin(i), t=1,...,n—N,and B, i=1,...,n— N, s=sg,..., 1,
calculate the lifting coefficients by the following FORTRAN-like code:
doit=1, n—N
do j = ]mm(z)a ]mm(z) +m
do 7 = Jmin(t), Jmin(t) +m+k+1
Calculate g;(z,).
end do

Calculate Pj(z) using Newton interpolation formulas.

Calculate ayj =y .b, BisTi; . Tiyrr1] Pj() -
end do
end do

The same algorithm may give the refinement coefficients because they satisfy similar equatic

S1
/Bixpd:c = Z /risBsxpdx, p=20,...,81 — sy — 1.

§=358¢



CONSTRUCTION OF DISCRETE TRANSFORMS

b= rishs, W= Buds— Y ® (6B, & B, U
S s J

F=Y 0 =Y V@Y Wil wyautty v, = (f, ¢), Vi = (f, &), Wi =
s 1 {

MR

Ry Ry] = [ris), R; = diagonal, A = [ay]



EXAMPLES OF FUNCTION-RELATED MATRICES

0.0 if § = j

1/|z; — z;|P otherwise Ti cos(m/2n)

aij =

Consider the non-standard transforms with k = 1 and m = 4. Sparsification threshold is set to 107 %. The computational comple
transforming vectors and matrices using the non-standard wavelets is approx. the same (actually a little less) as for a Daubechies order 3 trar
The storage for non-zeroes with non-standard wavelets is less than 1/3 of that using the Daubechies order 4 transform and only about 1/2
using Daubechies 3 wavelets. Figure 4 illustrates this by showing the Frobenius norm of the error (obtained by applying an inverse transform
sparsified matrix and comparing with the original dense matrix), plotted against the compression rate (i.e. the fraction of non-zero entries
a‘l=1/|><‘—><l|“2

sparse matrix). o ‘

error

107 Db3 B

107 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
compression rate

Figure 4: Frobenius norm a posteriori error plotted against compression ratio for function-related matrix from Example 1 with p :
using non-standard (NS) and Daubechies order 3 (Db3) wavelets.



