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A motivating example:
Monitor pollution empirically from water samples
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Fluorescence spectroscopy
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A practical example:
Data from each sample

State of the art: Peak-spotting!!!

Talk available at http://www.models.kvl.dk/users/rasmus/paloalto.zip
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Practical example
What chemometrics and datamining had to offer

• Each sample yields 100 × 300 matrix
• Model with PCA (truncated SVD)
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PARAFAC - The movie!
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PARallel FACtor analysis

• PCA - bilinear model,

• PARAFAC - trilinear model,
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PARAFAC invented in 1970 by Harshman and 
independently by Carroll & Chang under the name 
CANDECOMP. Based on a principle of parallel 
proportional profiles suggested in 1944 by Cattell

•R. A. Harshman. UCLA working papers in phonetics 16:1-84, 1970.
•J. D. Carroll and J. Chang. Psychometrika 35:283-319, 1970.
•R. B. Cattell. Psychometrika 9:267-283, 1944.

X = ABT+E

Xk = ADkBT Dk =diag(c(k,:))+E
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PARallel FACtor analysis

Low-rank: 
• Khatri-Rao (Rao 73) rather than Kronecker

X(I×JK) =  AI(F×FF)(C⊗B)T = A(C B)T
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PARAFAC - uniqueness

• Uniqueness - conditions
A PARAFAC model is unique when

kA + kB + kC ≥ 2F + 2

F is the number of components and kA is the k-rank of loading 
A : maximal number of randomly chosen columns which will 
have full rank

J. B. Kruskal, 1977.
N. D. Sidiropoulos and R. Bro, 2000.
ten Berge & Sidiropoulos, 2002

X
B

A

C

• Uniqueness – repercussions
• An 8-component PARAFAC model of a 6×6×6 array unique 

• i.e. six samples – eight components!
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A practical example:
Data from each sample

State of the art: Peak-spotting!!!
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Practical example
PARAFAC on environmental samples
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PARAFAC - algorithm

Efficient ALS algorithm
(Harshman 70)

– * Hadamard (elementwise product)
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Why ALS?
Simple
Extends to N-way
Handles missing
Handles ML fitting
Constraints:
• Nonnegativity
• Unimodality
• Orthogonality
• Linear constraints
• Fixed parameters
• Smoothness
• Functional
• etc
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Important notes

• PARAFAC is a low rank (least squares) model
• Identical to candecomp
• Alternative: Sequential rank-one deflation-based low-

rank power method (Bro, 1996), 
– no least squares properties 
– no physically meaningful uniqueness properties
– not low rank!!!

• Tri-/multi-linear PARAFAC model has no orthogonality 
properties

– Imposing orthogonality would lead to loss of fit (unlike in 
two-way decompositions)
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Important notes

• Alternative to low-rank approximation
• Tucker3 model (HO-SVD) is a subspace based method
• Retains many properties of SVD (Tucker 67, 

Kroonenberg 83, de Lathauwer 97)
• No (physical) uniqueness
• No ”rank properties”
• Useful for 

– Datamining (Henrion et al. 97)
– Compression (Bro & Andersson 98) 
– Exploratory analysis (Kroonenberg 83)

• Suggestion: Forget the rank-aspect of SVD and focus
on subspace properties -> Tucker HO-SVD! 

– Tucker: Subspaces
– PARAFAC: Low-rank
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Some PARAFAC problems
Algorithmic
Statistical
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PARAFAC algorithm

The algorithm is slow, sometimes non-convergent and intrinisically
just difficult!

Remedies:
• Initialization

– Random or SVD, 
– GRAM (eigenproblem)

• Speed-up
– “Optimal” compression Not for difficult data (Alsberg 93, Bro & Andersson 98)
– ”Ad hoc” compression More general (Bro 97)
– Line-search Works well (Harshman 70)

• Alternative algorithms
– GRAM/DTLD Not LS, not constraints, not missing
– (damped) Gauss-Newton Not big problems, good >70% missing (Paatero 97, Tomasi & Bro, 04)
– Conjugate gradients etc. Nice, not big problems, not nway, not constraints
– Separable least squares Feasible but constraints not possible (Bro & Sidiropoulos)
– Grid computing General matlab toolbox under development!
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PARAFAC algorithm – statistical problem
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PARAFAC algorithm – statistical problem

”Any number without associated uncertainty is meaningless.”

To calculate confidence intervals etc. degrees-of-freedom are needed

• Standard deviation uses denominator N-1 (average eats one DoF)
• Multiple linear regression with J variables uses J DoFs
• A 2×2 random matrix has 4 DoF. 

– It is rank 2 with probability 1
– Hence a 2 comp PCA/SVD uses at least 4 DoF

• A 2×2×2 random array has 8 DoF?
– It is rank 2 or rank 3 with positive probability
– Hence sometimes a 2 comp PARAFAC uses 8 DoF but sometimes not!

=> Statistics don’t work here. Even though the distribution of the 
residuals are known they can not be used for calculating coverage, 
confidence etc.

=> Rank is not a function of dimension of array!!!
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PARAFAC – Some applications
Slicing – exponential fitting
Using a general maximum likelihood fitting for handling bias
Other applications
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Resolving two-way exponentials

Time (ms)
0 100 200 300 400 500 600 700 800 900 1000

I(t) = M0 · exp(-t/T2)

Two-way data but with very special structure in loadings

X = AB’ = 
1 0 27 9 3 1
0 1 16 8 4 2
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Sample 1 Sample 2

27 16
9 8
3 4
1 2

Pedersen et al 01
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SLICING - Pseudo Three-way Data

X1 = AD1B’ =
9 31 0 3 1
8 4 20 1
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0 2
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Slicing principle
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Example: Sensory quality

Predicting cooked potato quality from 
NMR on raw data

Potatoes cooked and served hot. The 
assessors (10) evaluate texture profile, e.g. 
mealiness

Raw (!) potato measured by NMR (CPMG pulse 
sequence)
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A. K. Thybo et. al., Food Science and 
Technology, 33 (2):103-111, 2000.
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Example: Sensory quality

• Decomposing NMR into meaningful latent variables
– PARAFAC on lagged data enables meaningful  decomposition
– Four components adequate for describing NMR data

• Predictions of mealiness from NMR
– Predicting sensory quality of cooked potatoes from amount of latent 

variables (i.e. directly from NMR of raw potatoes)
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MILES – maximum likelihood

• Algorithm MILES (Maximum likelihood via 
Iterative Least squares EStimation)

• Enables weighted least squares and 
maximum likelihood fitting of any model 
which has a least squares algorithm

1. Initialize model, m0, with LS, set c := 0;

2.  

3. mc+1 =  

4. c := c+1; go to step 2 until convergence

β= + −T
c c1 / ( )q m W W x m

∈ϒ
−

2

F
argmin

m
m q

Calculate q

Fit LS model to q instead of to data
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Example: fluorescence

• 21 samples containing L-phenylalanine, L-3,4-dihydroxy-phenyl-
alanine (DOPA), 1,4-dihydroxy-benzene & L-tryptophan

• Three types of unwanted variation
– Measurement error (~iid Gaussian)
– Rayleigh and Raman scatter
– Non-chemical area

ε

Baunsgaard D,  Factors affecting 3-way modelling (PARAFAC) of fluorescence
landscapes, The Royal Veterinary & Agricultural University, 1999
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Example: fluorescence

RAW DATA
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MILES interpretation of data
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Example: fluorescence
• Emission spectra from 100 resamplings
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R. Bro, N. D. Sidiropoulos, and A. K. Smilde. Maximum likelihood fitting using simple least squares 
algorithms. Journal of Chemometrics, 2002
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Other Examples

DOSY/Metabonomics
Toft et al 2004

Anthropometry
S Lee  & R Bro, 2004

Low-res NMR
Toft et al 2003

Tracing DOM
Stedmon, Markager, Bro 2003

Generalized ANOVA
Bro & Jakobsen 1996, 2002

User separation in CDMA
Sidiropoulos, Bro 1998

Electronic nose
Skov & Bro 2004

Light-induced oxidation 
of cheese

Andersen & Bro 2004

19, Australia
6, E. Europe

1, N. America

5, C. Europe

Europe 19, Australia
6, E. Europe

1, N. America

5, C. Europe

Europe

Quantify catecholamine in urine

Process Analytical Technology
Datamining

Bro 1998

Time-intensity
Ovejero-López et al, 2004

5-way analysis
Bro 1997

EEG
Miwakeichi et al 2004

http://www.models.kvl.dk/news/hf-nmr/index.asp
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Concluding remarks

• Uniqueness (mainly 
PARAFAC)

• Better structural model
– Robustness/noise reduction
– Simpler model
– Interpretation
– Better predictions
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Concluding remarks

What I would have liked to talk about!

PARAFAC2
N-PLS, Multilinear partial least

squares regression
Jack-knifing
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Software & info
• www.models.kvl.dk (free code,courses,papers,theses)
• www.eigenvector.com (Matlab Toolbox)
• publish.uwo.ca/~harshman/ Hard to get papers by Harshman
• TRICAP 2006, Technical Univ. of Crete, Greece, 

– contact: Nikos Sidiropoulos, nikos@telecom.tuc.gr;nikos@ece.umn.edu

• www.models.kvl.dk/users/rasmus/paloalto.zip Talk
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