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OUTLINE

e Orthogonal Decomposition of a Matrix
e Notation & Terminology for Tensors
e Definition of a Rank-1 Tensor

e Definitions of Orthogonality for Tensors

— Orthogonal, Strongly Orthogonal, Completely Orthogonal

e Tensor Rank Decompositions

— Orthogonal Rank, Strong Orthogonal Rank
e Examples

e Best Rank-k Approximation?

— Orthogonal Rank, Strong Orthogonal Rank
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ORTHOGONAL DECOMPOSITION
OF A MATRIX

Singular Value Decomposition
A=UxVT = Zr:aiuiv?
i=1
Eckart-Young Theorem (1939) — The solution to
min ||[A — B|| s.t. rank (B) =k
is given by

k
— § : T
B = O;U;V;
=1

Can we say something similar about

the best rank-k approximation of a tensor?

T.G. Kolda, Sandia National Labs 3

SIAM Annual Meeting July 11, 2002

MATRIX = TENSOR NOTATION
A = Zai uiv;f
=1
= ZO’i U; © V;
1=1
- Sououf?
=1

r

= ZO’Z' UZ

=1
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TENSOR TERMINOLOGY

Tensor - an n-way array

A = le Xmg X+« XMy,

The order of A is n. The jth dimension of A is m;.

Inner Product of two Tensors

E : z : ; : AzlazZa e 7/1#2) "ai'n

'Ll 1'1,2 1 'l,n—]_

Norm of a Tensor (Frobenius norm for matrices)

JA|? = (A, A) ZZ Z

’L1 ].'Lz 1 'Ln—l
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RANK-1 = DECOMPOSED

Decomposed tensor
U=uou® o...0¢um
ul9) € R™ for each j
Each u(%) is called a component of U.
The (i1,12,...,i,)-entry of U is given by
Ui, io.i 1), @ 0

ceyln 21 19 zn

Decomposed tensors are the building blocks

of tensor decompositions.
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PropucTS OF DECOMPOSED TENSORS

Ueu®ou®o... oy®

V= 0@ op®o...0p™

Inner Product - Product of products of components

ﬁ (J) (J)

Norm - Product of norms of components

Ul =TT Ilu]s.
=1
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SuMS OF DECOMPOSED TENSORS
U=u®ou®oy®o...0yuM

V=uBor®oy®o...ouM

Lemma (K) The sum of U and V is a decomposed ten-
sor if and only if all but at most one of the components

of U and V are equal (within a scalar multiple).

(2) 4 42
R DA AN ) DA )
V2

— Not necessarily true for three or more tensors <—
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ORTHOGONALITY
U=u®ou®o...oy®

V=00 op@o...0pM
Orthogonal (UJ_ V)

ﬁ @), @)y =0

Strongly Orthogonal (U L, V)
ULV and (), 00} =0 or ul) = v for each j

Completely Orthogonal (UL, V)
(u) ()Y = 0 for each j

Completely Orthogonal = Strongly Orthogonal = Orthogonal
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ORTHOGONAL RANK TENSOR
DECOMPOSITIONS

Find the minimal r such that A can be expressed as

A=) ol
=1
e Orthogonal Rank Decomposition
Ui LU; for all ¢ # j
e Strong Orthogonal Rank Decomposition

UiLsUj for all i # 5

No completely orthogonal decomposition in general!
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TENSOR RANK
Theorem (Leibovici & Sabatier)

orthog rank(A) < strong orthog rank(A)

Furthermore, equality holds if A has a com-

pletely orthogonal decomposition.

Corollary (K) For any order n > 2, there exists

a tensor of order n such that
orthog rank(A) < strong orthog rank(A)

Furthermore, that tensor cannot be decomposed
as the weighted sum of completely orthogonal

decomposed tensors.
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WHAT MAKES MATRICES SPECIAL?

r
A= E O; Uz OV
1=1

For any i # j, we have
(u; ov;) Le (uj ovy)

since the SVD has the property that
u;lu; and v, L

Matrices always have a

completely orthogonal decomposition
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EXAMPLE

Strong Orthogonal Decomposition

Assume |ja|| = ||b]| = 1, aL b, and 01 > 09 > 03 > 0, and
A=c1ao0bob+oybobob+4+o3acaoa

= Strong Orthogonal Rank of A = 3.

Orthogonal Rank Decomposition

ola—f—agb
\/a%—kcf%

= Orthogonal Rank of A = 2.

A=/} + 03 ( >Ob0b+03aoaoa,
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STRONG ORTHOGONAL DECOMPOSITION
1S NOoT UNIQUE

A=c1a0bob+oybobob+o3aocaoa

can also be expressed as ...

A=061a0bob + 09aocaoa + o03boaoca

where
N 01 03 09 03
2 2
01 =1\/01] t05 02=— 3= —
01 01
n 0’1&—}-0’2[) ~ 02a_01b
a= - b= -
01 01
Note a_l b.
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ORTHOGONAL DECOMPOSITION
IS NoT UNIQUE

. N

Azrol aobol;—f—ragbobol;—i—agaoaob
| — |

Orthogonal Decomposition 1: (1st and 2nd terms)
o1a + O’Qb
VA 0% + 0%
Orthogonal Decomposition 2: (1st and 3rd terms)

A:1/O'%+O'§ a o (W) ob+o‘2 bObOb7

a% —1—03

A=/} + 03 ( >Ob0b+03aoaoa,
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PROBLEM OF UNIQUENESS

Goal: Find the best approximation of A with
orthogonal rank k.

Approach: Take the first k terms of the
orthogonal rank decomposition.

Problem: Which of the orthogonal
decompositions should we use?

Solution? Among all possible decompositions,
choose that which has o; > maxo; for each

successive j.

[ Ditto for strong orthogonal rank decomposition |

T.G. Kolda, Sandia National Labs
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ECKART-YOUNG EXTENSION?

Question: Let the ‘unique’ orthogonal rank

decomposition of a tensor A be given by

A= i o;U;
i=1

Is it true that the best orthogonal rank-£
approximation to A is given by

k
Ak = ZUiUZ
1=1

What about the the strong orthogonal case?

T.G. Kolda, Sandia National Labs
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P
I

1.00aocaoa
0.75bobob

0.70aocod
0.70aodoc
0.65bocod
0.65bodoc

+ + + + +

STRONG ORTHOG COUNTEREXAMPLE

Let the m-vectors a, b, ¢, d be pairwise orthogonal, and define

the m x m x m tensor A =>°_. 0;U; as follows.

71V1i =4/o 03a+a5b ocod
V ‘73 +‘75
72‘/2 / a4a—|—06b oc
\/04 —{—06
1 =72 = 0.9552 < 01 = 1,

SO Al = 0'1U1.
On the other hand ...

N2 442 = 1.825 > 02 + 02 = 1.5625.

So As = y1 V1 + 2 V2!

T.G. Kolda, Sandia National Labs
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ORTHOGONAL COUNTEREXAMPLE

Assume a l b, ¢ = %(a +b), and o1 > 02
A=c01a0ao0a+ogcocob
Best Rank-1 Approximation
Aj=~yzoyoz
T =o0ga+ b y=oaya+pyb z=o,a+ b
(0 + ) (s + By)B:

o #0, ay #0, o, #0, B2 #0, By #0, 5. # 0

But cannot extend A to a

Y= 01000, +

2-term orthogonal rank decomposition.
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SUMMARY

= Counterexample to Eckart-Young extension for strong

orthogonal rank decomposition.

= Counterexample to Eckart-Young extension for
orthogonal rank decomposition.

LARGER ISSUES
e How can we efficiently calculate tensor decompositions?
e What are other applications of such decompositions?

e Can we exploit structure such as (partial) symmetry?
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