An Asynchronous and

Fault Tolerant Algorithm for

Parallel Pattern Search
Optimization

TAMARA G. KOLDA
PATRICIA D. HouGgH

Sandia Nationals Labs, Livermore

VIRGINIA TORCZON
College of William & Mary

ACKNOWLEDGMENTS

DOE MICS Office
Sandia National Labs

National Science Foundation

OUTLINE

Pattern Search Methods for Optimization

Parallel Pattern Search (PPS)

Asynchronous Parallel Pattern Search (APPS)
Example: A Thermal Design Problem

Example: An Electrical Circuit Simulation

Fault Tolerance in APPS

Example: An Electrical Circuit Simulation with Faults
Convergence Theory for APPS

Conclusions & Future Work

USING PATTERN SEARCH

Our goal is to solve the unconstrained optimization problem
min f(x) x € R"

without derivative information. Pattern search is a popular

derivative-free method which is most useful when. ..

e The function is expensive to calculate.
e The gradient cannot be calculated.

e Numerical approximation of the gradient is too slow, or the
function values are too noisy to yield reliable gradient

approximations.

Examples of such problems come from engineering applications.

PATTERN SEARCH

PATTERN SEARCH

PATTERN SEARCH

PATTERN SEARCH

PATTERN SEARCH

PATTERN SEARCH

PATTERN SEARCH

CHOOSING THE SEARCH DIRECTIONS

The pattern must be chosen so that it positively spans R".

Defn: A set of vectors {dy,...,d,} positively spans R™ if any

vector £ € R™ can be written as

r=o1d; + -+ opdy, ;>0 Va.

That is, any vector can be written as a nonnegative linear

combination of the basis vectors.

Fact: If {dy,...,d,} positively spans R", then for any = # 0,
there exists d; such that df z > 0.

PARALLEL PATTERN SEARCH ALGORITHM

This algorithm is from a single processor’s point-of-view.

QOE@C&@ Ttrial € Thest + Dﬁim_ &g and
evaluate .\.ﬁim_ — \AHS&@HV.

. Determine {Zpew, fnew | Via a global reduction

on all {Ttyia1, firial} values.

If faew < foests replace {Thest, foest} <= {Znew, faew -
Else Dﬁi& — WDQET

. If Agria1 > tol, go to Step 1. Else, exit.

PROBLEMS WITH PPS

The global reduction in Step 2 is a potential bottleneck;
that is, some processors may sit idle while waiting for others
to finish. This can happen for several reasons...

1. The computation time for the objective function may

vary depending on the inputs.

. The load on the individual processes may vary.

Groups of processors participating in the calculation

may possess varying performance characteristics.

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

1

ASYNCHRONOUS PARALLEL PATTERN SEARCH

0. Consider each incoming triplet {Zpew, fuew, Anew } received

from another processor. If foew < fhest, replace
Amﬁommf \,vmwf D_ommdw < AHBmSQ ,\bmﬁj Dbméw? Dﬁim_ Amn D_ommﬁ.

QOBUG&@ Ttrial < Thest + Dﬁim_ &“ and
evaluate \.ﬁim_ — ,\.AH\GEQC.

Set ﬁ.&.bmﬁ: \.5@59 Dbmﬁ\w < AH\GEWT .\.\oimT D\nim_w.

If .\.5@5 < .}ummf then ﬁ&_ommf .\._omm? D_ommﬁw < ﬁ.&ﬁmﬁj .\.5@2“ Dbmiu?
Airial ¢ Apest, and broadcast the new minimum triplet

{Zpest, foest, Abest } to all other processors. Else
1
Ddima — MD&E@T

If A¢rial > tol, goto Step 0. Else broadcast a local convergence

message for the pair {Zpest, foest |-

. Wait until either (a) enough of processes have converged for

this point or (b) a better point is received. In case (a), exit. In

case (b), goto Step 0.

APPS DAEMON

e New Minimum from Another Processor

H|m \Bmé < ,\,,_u@mf then Mﬁbu_ommf \Uowf Dvomﬁw < A&Smﬁ: \Bmﬁj DS@SH__V.
Return from function evaluation

m .\.Emp < .\.Ummf then ﬁ&vmmf .\.Ummf D_ommaww Amn ﬁ&ai@? \ni@? Daimﬂwu
Airial ¢ Apest, broadcast the new minimum, and spawn a

new function evaluation.

Else if xpest # trial point generator, then spawn a new
function evaluation using A a1 ¢ Apest-

Else A¢ria = wDE&. If Airial < tol, then broadcast a local
convergence message, else spawn a new function

evaluation.
Local Convergence Message

Go through steps for new minimum to verify point. If incoming
point is the same as best, then update its convergence table and
check for convergence.

PrLay APPS MOVIE

ARCHITECTURE: PVM

PVM stands for Parallel Virtual Machine and is a communication
architecture for parallel and distributed computing.

PVM is particularly useful in cluster computing because it can be

used in a heterogeneous environment and supports fault tolerance.

PVM provide the following capabilities:

e Blocking and non-blocking sends and receives (including message

tags and probe ability)
e Process spawning and termination ability

e Ability to detect task failures

e Access to host configuration information

PVM'’s weakness is its dependence on the master daemon to survive.

ExaMPLE: A THERMAL DESIGN PROBLEM

e Objective: Determine power settings for heaters on a

thermal deposition furnace for silicon wafers

e Simulation Code: TWAFER yields measurements at a

discrete collection of points on the wafers

fl@) =3 (Tya) = T.)°

Unknown power settings
Temperature at measurement point j
Total number of measurement points

Ideal temperature

NUMERICAL RESuULTS — FOUR HEATERS

Search directions - Regular Simplex (5) plus Random (15)
A = 10.0, and tol = 0.1.

Each function evaluation takes approximately 1.3 seconds
Quick fix for bound constraints—interior solution

Average of 10 runs

Method f(xx)

APPS
PPS

NUMERICAL RESULTS — SEVEN HEATERS

Search directions - Regular Simplex (8) plus Random (27)
A = 10.0, and tol = 0.1.

Each function evaluation takes approximately 10.4 seconds
Quick fix for bound constraints—interior solution

Average of 9 runs

Method f(xx) Total
Time
APPS 2260.46

PPS 2306.83

ExaMPLE: AN ELECTRICAL CIRCUIT
SIMULATION

Variables: inductances, capacitances, diode saturation

currents, transistor gains, leakage inductances, and transformer

core @@H@B@dmﬁ.m

Simulation Code: SPICE3

17 unknown characteristics
Simulation voltage at time ¢
Experimental voltage at time ¢

Number of timesteps

CIRcUIT PROBLEM RESULTS

— Experimental
Starting Pt
- - - Solution

CIrcUIT PROBLEM NUMERICAL RESULTS

e Search directions are 4+ Unit Vectors (34) plus Random
e A =1.0, and tol = 0.1.
e Fach function evaluation takes approximately 20 seconds

e Quick fix for bound constraints—solution on boundary

Method | Procs | f(x*) | Function | Idle Total
Evals Time | Time
APPS 34 57.5 111.92 | 1330.55
APPS 50 50.6 63.22 | 807.29
PPS 34 53.0 521.48 | 1712.24
PPS 50 47.0 905.48 | 1646.53

FAULT TOLERANCE

We can afford to lose processes as long as we

maintain a positive basis.

Processes can be restarted when we no longer
have a positive basis.

Progression towards a solution continues as

long as one or more APPS processes is alive.

Completion does not depend on the survival of

any particular APPS daemon.

PrLay APPS wiTH FAULTS MOVIE

ExaMPLE II REVISITED

The “fault” versions have a failure in the function eval-

uation or daemon every 30 seconds.

Initial | Final | f(xx) | Total

Procs | Procs Time
34 34 26.2 | 1330.55
34-faults 34 27.8 | 1618.46
50 50 26.9 | 807.29
50-faults 32 54.2 | 1041.14

In the 50-faults results, the “quick fixr” for bound con-

straints comes back to haunt us.

CONVERGENCE THEORY FOR APPS

Assume that f is continuously differentiable and that the level set
L(xg) is bounded. Further assume that the maximum message time
is bounded above and that the maximum function evaluation time
is bounded above.

Theorem. There exists a subsequence 77 such that

. .ﬁ' .
ﬁmwboob&lou 1=1,...,p
ﬁmum

Theorem. There exists a subsequence 7" C T} such that

. t A .
ﬁmmyooﬁl&j 1=1,...,p
ﬁmﬂ%

Furthermore, 2; = %, for all ¢ # j.

Theorem. At the limit point & (

CONCLUSIONS

Introduced APPS, an asynchronous and fault tolerant

parallel pattern search method for optimization.

APPS is useful when function evaluation time varies or

faults are a concern.

APPS has proportionally much less idle time than PPS,
and APPS was demonstrated to be faster than PPS on

two engineering problems.

APPS incorporates a very high level of fault tolerance at

both the algorithmic and the coding level.

FUTURE WORK

Constraints (bounds, linear, nonlinear)

Function value cache

Conditioning of positive basis

Dynamic search direction based on model

Pure MPI Version (No Fault Tolerance)

HIGHLIGHTS OF LATEST INCARNATION

One APPS Agent Per Host (less overhead)

May Specity “Ideal” Number of Fevals for Each Host

May Assign 0 Function Evaluations to a Host

Dynamic Addition/Deletion of Hosts

“Smart” Remapping of Fevals to Hosts (with several options)

Better Handling of Failed Fevals

LINKS

http://csmr.ca.sandia.gov/projects/apps.html

http://csmr.ca.sandia.gov/ " tgkolda/pubs.html#apps

