
Tamara G. Kolda – GAMM – January 25, 2008 - p.1

Efficient Computations 
with Tensors and 

Examples from Data Mining 

Tamara G. Kolda
Sandia National Laboratories

Collaborators
Brett Bader and Peter Chew

Sandia National Laboratories



Tamara G. Kolda – GAMM – January 25, 2008 - p.2

Tensor Background
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Tensor Basics: 
Fibers and Matricizing

Column (Mode-1) 
Fibers

Row (Mode-2)
Fibers

Tube (Mode-3)
Fibers

I x J x K

Matricizing/Unfolding
X(n): The mode-n fibers 
are rearranged to be the 
columns of a matrix 

j

i
k



Tamara G. Kolda – GAMM – January 25, 2008 - p.4

Vector Outer and 
Kronecker Products

2-Way Outer Product
(I×J Rank-1 Matrix)

3-Way Outer Product
(I×J×K Rank-1 Tensor)

2-Way Kronecker Product
(IJ-Vector)

3-Way Kronecker Product
(IJK-Vector)

=

=
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Matrix Kronecker &
Khatri-Rao Products

Kronecker Product
(MP x NQ Matrix)

M x N P x Q

Khatri-Rao Product
(MN x R Matrix)

M x R N x R MN x R

MN x PQ

R x R

Hadamard
(Elementwise)

Product
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Tensor Times Matrix
Tensor Times Matrix 

in Mode-1
Tensor Times Matrix 

in All Modes

I x J x K M x IM x J x K
I x J x K M x IM x N x P N x J P x K
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Primary Tensor 
Decompositions
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What is the higher-order 
analogue of the Matrix SVD?

Two views of the matrix SVD:

Finding bases for row and column subspaces:

Sum of R rank-1 matrix factors (where R is the rank):

= = +
σ1 σ2 σR

+L+

Tucker
Decomposition

CANDECOMP/
PARAFAC
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Tucker Decomposition

See Tucker, Psychometrika, 1966; see also Hitchcock, 1927.

• Also known as: three-mode factor 
analysis, three-mode PCA, orthogonal 
array decomposition

• Sizes R, S, T chosen by the user. 
• A, B, and C may be orthonormal

(generally assume full column rank)
• Core is not diagonal 
• Not unique

I x J x K

≈

A

I x R

B

J x S

CK
x T

R x S x T

Core
Tensor
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CANDECOMP/PARAFAC (CP)

• CANDECOMP = Canonical 
Decomposition

• PARAFAC = Parallel Factors 
• Columns of A, B, and C are not 

orthonormal
• Exact decomposition is often unique

Carroll & Chang, Psychometrika, 1970, Harshman, 1970 – plus Hitchcock, 1927.

I x J x K

+…+
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MATLAB Tensor Toolbox
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MATLAB has MDAs

Multidimensional Arrays 
(MDAs)

Dense Only!
No support for 

multiplication, etc.

• Standard Operations
Subscripted reference 
and assignment

Size queries 
(size, ndims, nnz)

Permute/squeeze

Elementwise and scalar 
operations 
(+,-,*,/,^,etc)

Logical operations 
(and,or,xor,not)

Comparisons 
(==,>,<,>=, <=,~=)
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Tensor Toolbox adds 
functionality & sparse support

• Standard Operations
Subscripted reference 
and assignment
Size queries 
(size, ndims, nnz)
Permute/squeeze
Elementwise and scalar 
operations 
(+,-,*,/,^,etc)
Logical operations 
(and,or,xor,not)
Comparisons 
(==,>,<,>=, <=,~=)

• Tensor-Specific Operations
Matricize
Tensor multiplication 

• outer product, etc.

Contraction 
Norm

• Other Tensor Operations
Collapse/scale
Matricized-tensor-times-
Khatrio-Rao-product
Mode-n singular vectors

• Khatri-Rao product, etc.

For dense, sparse, and structured tensors.
Fully object-oriented.
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Sparse Tensors
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Exploiting Sparsity:
Sparse Tensors (sptensor)

• Sparse if majority of 
entries (xijk) are zero

• Some storage options
Each two-dimensional 
slice stored as sparse 
matrix

Unfold and store as 
sparse matrix 

• Lin, Liu, Chung, IEEE Trans. 
Computers, 2002 & 2003

Coordinate format

• Storage for sptensor

P = # nonzeros

vals = P x 1 vector of 
nonzero values

subs = P x 3 matrix of 
subscripts

Norm of sparse tensor
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Sparse Storage Example
2 x 2 x 2 Tensor with P = 4 Nonzeros
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Tucker for Sparse
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Fitting Tucker

Fact 1: Optimal core exists

Fact 2: Core can be eliminated to form objective in A,B,C

Fixing B & C, can solve this 
equation for A

If B & C are completely 
unknown, solve:

Assume A, B, C
orthonormal



Tamara G. Kolda – GAMM – January 25, 2008 - p.19

HO-SVD (Tucker1)

• Convert tensor to MATLAB sparse matrix
• Bad: X(1) is a wide, short matrix

Size I x JK

Worst possible aspect ratio for MATLAB’s CSC format
• Good: U = X(1)

T, which is tall and skinny
Size JK x I

• To compute left singular vectors of X(1), 
calculate eigenvalues of V = UUT

Size I x I

Find optimal component w/o 
knowledge of other components:

Need to find leading left singular vectors of X(n)

Simplest approach; much more sophisticated methods exist.

De Lathauwer, De Moor, & Vandewalle, SIMAX, 2000.
Also known as “Method 1” in Tucker, 1966.

I

JK

X(1)

JK

I

X(1)
T
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eigs vs. svds

• >> I = 100; J = 100; K = 100; P = 5000;

• >> U = sprand(J*K, I, P/(I*J*K));

• >> R = 10;

• >> tic; V = U'*U; [U1,D1] = eigs(V,R,'LM'); toc

• Elapsed time is 0.023073 seconds.

• >> tic; [U2,S2,V2] = svds(U,R); toc

• Elapsed time is 0.237503 seconds.

JK

I

U

Create 
100x100x100
(matricized) 

tensor with 5000 
nonzeros.

Calculate 
eigenvectors

of UTU

Calculate 
singular vectors

of U

In MATLAB, eigenvalue calculation is 10x faster than SVD.
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Computing Core Tensor 
is Difficult

• Final core is small 
• But intermediate results are large
• Requires too much time and memory for even moderate sizes 

(1000 x 1000 x 1000)
• Currently researching ways to compute this efficiently…

R x S x T
dense

I x J x K
sparse

R x I S x J T x K

R x J x K
dense
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CP for Sparse
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Fitting CP

shorthand notation for sum –
corresponds to ktensor in the

Tensor Toolbox

Successively solve least 
squares problems.
Exploit structure of 
Khatri-Rao inverse.

Continue until fit ceases to improve:



Tamara G. Kolda – GAMM – January 25, 2008 - p.24

CP-ALS Algorithm

Tucker1

Norm

Matricized tensor times 
Khatri-Rao product (mttkrp)

Inner Product Norm
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Matricized Tensor Times Khatri-
Rao Product (mttkrp)

Trick 1: compute solution column-wise (for r=1,…,R):

Trick 2: Do not form unfolded tensor or Kronecker product

Trick 3: Optimize in MATLAB by avoiding loops 

JK x R
very big!

I x JK
sparse

Don’t want to 
compute 
explicitly
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Avoiding loops in mttkrp

z = vals .* b(subs(:,2)) .* c(subs(:.3)) 
a = accumarray(z, subs(:,1))

2 x 2 x 2 tensor with 4 nonzeros Vectors

Storage for sptensor

• P = # nonzeros
• vals = P x 1 vector of 

nonzero values
• subs = P x 3 matrix of 

subscripts

.* .* =
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CP-ALS Algorithm

Tucker1

Norm

Matricized tensor times 
Khatri-Rao product (mttkrp)

Inner Product Norm
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Norm of ktensor
I x R J x R K x R

I x J x K
dense

Cannot form tensor 
explicitly because it 
would be too large.

R x R
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Inner Product: 
sptensor & ktensor

write out
product

rearrange
terms

sum( vals .* ar(subs(:,1)) .* br(subs(:,2)) .* cr(subs(:.3)) ) 
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Toolbox Numerical Results
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Numerical Results:
Dense vs. Sparse

Sparse Dense Speed-Up MATLAB Speed-Up
Permute 1st and 2nd dims 0.0019s 0.3307s 174x 0.2845s 150x
Norm of X 0.0007s 0.0609s 87x 0.0874s 125x
Logical operation: X > 5 0.0588s 0.2570s 4x 0.0796s None
Scalar Multiply: X*5 0.0972s 0.2402s 2x 0.1641s 2x
Plus: X+X 0.2455s 0.4223s 2x 0.2540s None
Find all nonzeros 0.0006s 0.2079s 347x 0.1845s 308x
Sum all nonzeros 0.0013s 0.3786s 291x 0.1078s 83x
Tensor-Vector Multiply 0.0898s 0.8174s 9x N/A
Contraction 0.0035s 0.4479s 128x N/A
5 Dominant Mode-1 Vectors 0.1036s 5.2188s 50x N/A

Tests on 256 x 256 x 256 tensor with 32,000 nonzeros.
1.66GHz Intel CoreDuo laptop with 2GB of RAM 
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Numerical Results:
Sparse – 500,000 nonzeros

Sparse
Permute 1st and 2nd dims 0.0312s
Norm of X 0.0040s
Logical operation: X > 5 0.9934s
Scalar Multiply: X*5 1.6355s
Plus: X+X 4.2492s
Find all nonzeros 0.0022s
Sum all nonzeros 0.0043s
Tensor-Vector Multiply 0.0043s
Contraction 0.0312s
Dominant Mode-1 Vectors 5.7626s

Tests on a 10,000 x 10,000 x 10,000 tensor with ½ million nonzeros.
1.66GHz Intel CoreDuo laptop with 2GB of RAM 
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Toolbox Summary
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Tensor Toolbox

• Seamless integration into 
MATLAB

• Object-oriented classes

• Enables storage of large-
scale sparse tensors

• Most extensive library of 
tensor operations available

• Documentation available 
within MATLAB

• Over 1000 unique registered 
users since release in 9/06

• Areas for toolbox improvement
Smarter memory manipulation in 
dense operations; avoid memory 
copies

Extend to other languages (C++)

More and better decomposition 
methods

Suggestions welcome!

http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
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PARAFAC2 and an 
Application in Data Mining
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Yet another view of 
PARAFAC

I x J x K

+…+=

= A

B

Xk

Sk

Sk = diag(kth row of C)

This representation only 
works for 3rd-order tensors.

Looks like SVD.
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PARAFAC2
(not, strictly speaking, a tensor decomposition)

Not a tensor,
but similar

PARAFAC

orthonormal
columns diagonal

used to enforce
uniqueness

R. A. Harshman, UCLA Working Papers in Phonetics, 1972.
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Application: Cross-Language 
Information Retrieval
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Latent Semantic Indexing (LSI)
in Multilingual Environment

Term-Doc Matrix

≈

Term-Concept Matrix

Concept-Doc Matrix

U VTΣX
Low-rank SVD 
Approximation

Step 1: Compute SVD on Parallel Corpus for training. Each 
“document” consists of all its translations.

Step 2: Map test documents to concept space. Each 
document is only a single translation.

Different translations of the same document 
should be nearby in concept space.

Goal

al
l t

er
m

s 
fr

om
 a

ll 
la

ng
ua

ge
s

Same U for all 
languages.
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A Different View

X1

X3

X2

X5

X4

LSI Matrix (though terms are mixed)

Stack of Matrices
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PARAFAC2 Model
Step 1: Compute PARAFAC2 on Parallel Corpus for 
training. Each “document” consists of all its translations.

Step 2: Map test documents to concept space. Each 
document is only a single translation.

Need to know 
language of test 

document.

Minor
Drawback
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Results Comparison

0.00

0.50

1.00

1.50

2.00

AR EN ES FR RU

Trained on Bible. 
Tested on Quran.

0.00

0.50

1.00

1.50

2.00

AR EN ES FR RU

For each document in each 
language on the vertical axis, 

we ranked documents in 
each of the other languages. 

The bar represents the 
average rank of the correct 
document. Rank 1 is ideal.

SVD 
Rank-300

PARAFAC2 
Rank-240

Closer to 
1.0 is better
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Other Decompositions
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Other Decompositions
• INDSCAL: Individual Differences in 

Scaling (Carroll & Chang, 1972) 
• PARAFAC2: (Harshman, 1978)
• CANDELINC: Linearly constrained 

CP (Carroll, Pruzansky, Kruskal, 
1980)

• DEDICOM: Decomposition into 
directional components (Harshman, 
1972)

• PARATUCK2: Generalization of 
DEDICOM (Harshman & Lundy, 
1996)

• Nonnegative tensor 
factorizations: (Bro and De Jung, 
1997; Paatero, 1997; Welling and 
Weber, 2001; etc.)

• Block factorizations:
(De Lathauwer, 2007; etc.)
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Other Data Mining 
Applications

• Higher-Order PCA – Tucker or CP to decompose a data stream. Useful 
in a variety of contexts such as chemometrics. (R. Bro, Critical Reviews in 
Analytical Chemistry, 2007)

• TuckerFaces and Image Analysis – HO-SVD of image tensor. (M.A.O. 
Vasilescu & D. Terzopoulos, CVPR, 2003)

• Hand-Written Digit Analysis – Classification problem. (Eldén and 
Savas, Pattern Recognition, 2007)

• Chatroom Analysis(*) – Comparison of Tucker and CP to distinguish 
conversations in chatrooms. (Acar et al, ISI 2005 and ISI 2006)

• TOPHITS(*) – CP of page x page x anchor text link tensor from the web 
graph to compute hubs, authorities, and topics. (Kolda, Bader, and 
Kenney, ICDM, 2005)

• Window-Based Tensor Analysis and Dynamic Tensor Analysis(*) –
Network intrusion detection. (Sun et al., ICDM 2006 and KDD 2006)

• Multi-way Clustering on Relational Graphs(*) – Using a variety of 
metrics for clustering. (Banerjee, Basu, and Merugu, SDM 2007)

• Enron email analysis(*) – Using CP and nonnegative CP. (Bader, Berry, 
Browne, Text Analysis Workshop at SDM 2007)

• EEG Analysis – Detecting onset of epileptic seizure using CP and 
multiway PLS. (Acar et al., 2007)
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Conclusions & Future Work

• Conclusions
Special data structures 
enable computations with 
large-scale tensors
Applications to data mining

• Future work
Tucker for sparse tensors 
(with J. Sun)
Tensor methods for 
clustering (with T. Selee)
Development of C++ tensor 
libraries (serial and parallel) 
with colleagues at Sandia
FAQ for Einstein notation 
and the tensor toolbox
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