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Abstract

The problem of missing data is ubiquitous in domains such as biomedical signal processing, network
traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, and communica-
tion networks—all domains in which data collection is subject to occasional errors. Moreover, these data
sets can be quite large and have more than two axes of variation, e.g., sender, receiver, time. Many
applications in those domains aim to capture the underlying latent structure of the data; in other words,
they need to factorize data sets with missing entries. If we cannot address the problem of missing data,
many important data sets will be discarded or improperly analyzed. Therefore, we need a robust and
scalable approach for factorizing multi-way arrays (i.e., tensors) in the presence of missing data. We focus
on one of the most well-known tensor factorizations, CANDECOMP/PARAFAC (CP), and formulate
the CP model as a weighted least squares problem that models only the known entries. We develop an
algorithm called CP-WOPT (CP Weighted OPTimization) using a first-order optimization approach to
solve the weighted least squares problem. Based on extensive numerical experiments, our algorithm is
shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is
significantly faster than the leading alternative and scales to larger problems. To show the real-world use-
fulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram) application
where missing data is frequently encountered due to disconnections of electrodes.
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1 Introduction

Missing data can arise in a variety of settings due to loss of information, errors in the data collection process,
or costly experiments. For instance, in biomedical signal processing, missing data can be encountered during
EEG analysis, where multiple electrodes are used to collect the electrical activity along the scalp. If one
of the electrodes becomes loose or disconnected, the signal is either lost or discarded due to contamination
with high amounts of mechanical noise. We also encounter the missing data problem in other areas of data
mining, such as packet losses in network traffic analysis [30] and occlusions in images in computer vision [8].
Many real-world data with missing entries are ignored because they are deemed unsuitable for analysis, but
this work contributes to the growing evidence that such data can be analyzed.

Unlike most previous studies which have only considered matrices, we focus here on the problem of
missing data in tensors because it has been shown increasingly that data often have more than two modes
of variation and are therefore best represented as multi-way arrays (i.e., tensors) [3, 17]. For instance, in
EEG data each signal from an electrode can be represented as a time-frequency matrix; thus, data from
multiple channels is three-dimensional (temporal, spectral, and spatial) and forms a three-way array [19].
Social network data, network traffic data, and bibliometric data are of interest to many applications such
as community detection, link mining, and more; these data can have multiple dimensions/modalities, are
often massively large, and generally have at least some missing data. These are just a few of the many
data analysis applications where one needs to deal with large multi-way arrays with missing entries. Other
examples of multi-way arrays with missing entries from different disciplines have also been studied in the
literature [28, 23, 14]. For instance, [28] shows that, in spectroscopy, intermittent machine failures or different
sampling frequencies may result in tensors with missing fibers (i.e., a fiber is the higher-order analogue of
a matrix row or column, see Figure 1). Similarly, missing fibers are encountered in multidimensional NMR
(Nuclear Magnetic Resonance) analysis, where sparse sampling is used in order to reduce the experimental
time [23].

Figure 1: Tensor with missing row fibers (in gray).

Our goal is to capture the latent structure of the data via a higher-order factorization, even in the
presence of missing data. Handling missing data in the context of matrix factorizations, e.g., the widely-
used principal component analysis, has long been studied [25, 13] (see [8] for a review). It is also closely
related to the matrix completion problem, where the goal is to recover the missing entries [10, 9] (see §3
for more discussion). Higher-order factorizations, i.e., tensor factorizations, have emerged as an important
method for information analysis [3, 17]. Instead of flattening (unfolding) multi-way arrays as matrices and
using matrix factorization techniques, tensor models preserve multi-way nature of the data and extract the
underlying factors in each mode (dimension) of a higher-order array.

We focus here on the CANDECOMP/PARAFAC (CP) tensor decomposition [11, 15], which is a commonly-
used tensor model in various applications [19, 18, 7, 1, 21]. Let X be a three-way tensor of size I × J ×K,
and assume its rank is R (see [17] for a detailed discussion on tensor rank). With perfect data, the CP
decomposition is defined by factor matrices A, B, and C of sizes I × R, J × R, and K × R, respectively,
such that

xijk =

R∑
r=1

airbjrckr,

7



Figure 2: Illustration of an R-component CP model for a third-order tensor X.

for all i = 1, . . . , I,, j = 1, . . . , J, and k = 1, . . . ,K.

In the presence of noise, the true X is not observable and we cannot expect equality. Instead, the CP
decomposition should minimize the error function

f(A,B,C) =

I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

R∑
r=1

airbjrckr

)2

. (1)

An illustration of CP for third-order tensors is given in Figure 2. The CP decomposition is extensible to
N -way tensors for N ≥ 3, and there are numerous methods for computing it [2].

In the case of missing data, a standard practice is to impute (i.e., fill in missing entries using various choices
of estimates such as the mean) the missing values in some fashion and then apply a standard factorization
technique, perhaps using the factorization to re-impute the missing values and repeating the procedure
iteratively. Another technique, which we use here, is to use a weighted version of the error function to ignore
missing data and model only the known entries. Imputation can be useful as long as the amount of missing
data is small but its performance degrades for large amounts of missing data [25] (also see §5). Alternating
methods, which compute the factor matrices one at a time, combined with iterative imputation can also be
quite effective and often preferred since they are simple and fast. Nevertheless, as the amount of missing
data increases, the performance of the algorithm may suffer since the initialization and the intermediate
models used to impute the missing values will increase the risk of converging to a wrong solution [28]. Also,
the poor convergence of alternating methods due to vulnerability to flatlining is noted in [8].

In this paper, in order to overcome the problems of imputation and alternating methods, we use direct
nonlinear optimization to solve the weighted least squares problem for the CP model. The weighted version
of (1) is

fW(A,B,C) =

I∑
i=1

J∑
j=1

K∑
k=1

{
wijk

(
xijk −

R∑
r=1

airbjrckr

)}2

, (2)

where W, which is of the same size as X, is a nonnegative weight tensor defined as

wijk =

{
1 if xijk is known,

0 if xijk is missing,

for all i = 1, . . . , I,, j = 1, . . . , J, and k = 1, . . . ,K.

Our contributions in this paper are summarized as follows:

• We develop a scalable algorithm called CP-WOPT (CP Weighted OPTimization) for tensor factoriza-
tions in the presence of missing data. CP-WOPT uses first-order optimization to solve the weighted
least squares objective function.

• Using extensive numerical experiments on simulated data sets, we show that CP-WOPT can success-
fully factor tensors with noise and up to 70% missing data. Moreover, CP-WOPT is significantly faster
than the best published method in the literature [28].

8



• We demonstrate the applicability of the proposed algorithm on a real data set in a novel EEG appli-
cation where data is incomplete due to failures of particular electrodes. This is a common occurance
in practice, and our experiments show that even if signals from almost half of the channels are miss-
ing, underlying brain activities can still be captured using the CP-WOPT algorithm, illustrating the
usefulness of our proposed method.

The paper is organized as follows. We introduce the notation in §2. In §3, we discuss related work in
matrix and tensor factorizations. The computation of the function and gradient values for the general N -way
weighted version of the error function in (2) and the presentation of the CP-WOPT method are given in
§4. Numerical results on both simulated and real data are given in §5. Conclusions and future work are
discussed in §6.

9
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2 Notation

Tensors of order N ≥ 3 are denoted by Euler script letters (X,Y,Z), matrices are denoted by boldface
capital letters (A,B,C), vectors are denoted by boldface lowercase letters (a,b, c), and scalars are denoted
by lowercase letters (a, b, c). Columns of a matrix are denoted by boldface lower letters with a subscript
(a1,a2,a3 are first three columns of A). Entries of a matrix or a tensor are denoted by lowercase letters
with subscripts, i.e., the (i1, i2, . . . , iN ) entry of an N -way tensor X is denoted by xi1i2···iN .

An N -way tensor can be rearranged as a matrix; this is called matricization, also known as unfolding
or flattening. The mode-n matricization of a tensor X ∈ RI1×I2×···×IN is denoted by X(n) and arranges
the mode-n one-dimensional “fibers” to be the columns of the resulting matrix. Specifically, tensor element
(i1, i2, . . . , iN ) maps to matrix element (in, j) where

j = 1 +

N∑
k=1
k 6=n

(ik − 1)Jk, with Jk =


1, if k = 1 or if k = 2 and n = 1,
k−1∏
m=1
m6=n

Im, otherwise.

Given two tensors X and Y of equal size I1× I2×· · ·× IN , their Hadamard (elementwise) product is denoted
by X ∗ Y and defined as

(X ∗ Y)i1i2···iN = xi1i2···iN yi1i2···iN

for all 1 ≤ in ≤ IN .

The inner product of two same-sized tensors X,Y ∈ RI1×I2×···×IN is the sum of the products of their
entries, i.e.,

〈X,Y 〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

For a tensor X of size I1 × I2 × · · · × IN , its norm is

‖X ‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2i1i2···iN .

For matrices (i.e., second-order tensors), ‖ · ‖ refers to the analogous Frobenius norm, and for vectors (i.e.,
first-order tensors), ‖ · ‖ refers to the analogous two-norm.

Given a sequence of matrices A(n) of size In × R for n = 1, . . . , N , JA(1),A(2), . . . ,A(N)K defines an
I1 × I2 × · · · × IN tensor whose elements are given by

(
JA(1),A(2), . . . ,A(N)K

)
i1i2···iN

=

R∑
r=1

N∏
n=1

a
(n)
inr
,

for all in ∈ {1, . . . , In} and n ∈ {1, . . . , N}.

For just two matrices, this reduces to familiar expressions: JA,BK = ABT. Using the notation defined
here, (2) can be rewritten as

fW(A,B,C) = ‖W ∗ (X− JA,B,CK) ‖2 .

11
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3 Related Work in Factorizations with Missing Data

In this section, we first review the approaches for handling missing data in matrix factorizations and then
discuss how these techniques have been extended to tensor factorizations.

3.1 Matrix Factorizations

Matrix factorization in the presence of missing entries is a problem that has been studied for several decades;
see, e.g., [25, 13]. The problem is typically formulated analogously to (2) as

fW(A,B) =
∥∥∥W ∗

(
X−ABT

)∥∥∥2 . (3)

A common procedure is to use an alternating approach, that combines imputation and alternation and is also
known as expectation maximization (EM) [28, 26]. In this approach, the missing values of X are imputed
using the current model, X̂ = ABT as follows:

X̄ = W ∗X + (1−W) ∗ X̂,

where 1 is the matrix of all ones. Of course, there must be some method for initializing A and B for the
first model, and this is the main difficulty of this method. Once X̄ is generated, the matrices A and/or B
can then be updated according to the error function ‖X̄−ABT‖2. See [26, 16] for further discussion in the
missing data and general weighted case.

Recently, a direct nonlinear optimization approach was proposed for matrix factorization with missing
data [8]. In this case, (3) is solved directly using a 2nd-order damped Newton method. This new method
is compared to other standard techniques based on some form of alternation and/or imputation as well as
hybrid techniques that combine both approaches. Overall, the conclusion is that nonlinear optimization
strategies are key to successful matrix factorization. Moreover, the authors observes that the alternating
methods tend to take much longer to converge to the solution even though they make faster progress initially.
This work is theoretically the closest to what we propose—the differences are that it focuses on matrices
rather than tensors and uses a second-order optimization method rather than first-order (in fact, the paper
mentions first-order as future work).

A major difference between matrix and tensor factorizations is worth noting here. In [26, 8], the lack of
uniqueness in matrix decompositions is discussed. Given any invertible matrix G, JA,BK = JAG,BG−TK.
This means that there is an infinite family of equivalent solutions. In [8], regularization is recommended as
a partial solution, but this can only control scaling and not rotational freedom. In the case of the CP model,
there is often only one solution (excepting trivial indeterminacies of scaling and column permutation) that
can be recovered exactly; see, e.g., [17] for further discussion on uniqueness of the CP decomposition.

Factorization of matrices with missing entries is also closely related to the matrix completion problem.
In matrix completion, one tries to recover the missing matrix entries using the low-rank structure of the
matrix. Recent work on this area [9, 10] shows that even if a small amount of matrix entries are available
and those are corrupted with noise, it is still possible to recover the missing entries up to noise. In [9], it
is also discussed how this problem relates to the field of compressive sensing, which exploits structures of
the data. Practically speaking, the difference between completion and factorization is how they measure
success. Factorization methods seek accuracy in the factors and this is the measure used in §5. Completion
methods, on the other hand, seek accuracy in filling in the missing data. Obviously, once a factorization has
been computed, it can be used to reconstruct the missing entries. In fact, most completion methods use this
procedure.

13



3.2 Tensor Factorizations

The EM procedure discussed for matrices has also been widely employed for tensor factorizations with missing
data. If the current model is JA,B,CK, then we fill in the missing entries of X to produce a complete tensor
according to

X̄ = W ∗X + (1−W) ∗ JA,B,CK,

where 1 is the tensor of all ones. The factor matrices are then updated using alternating least squares (ALS)
as those that best fit X̄. See, e.g., [6, 29] for further details.

Paatero [24] and Tomasi and Bro [28] have investigated direct nonlinear approaches based on Gauss-
Newton (GN). The code from [24] is not widely available; therefore, we focus on [28] and its INDAFAC

(INcomplete DAta paraFAC) procedure which specifically uses the Levenberg-Marquardt version of GN
for fitting the CP model to data with missing entries. The primary application in [28] is missing data in
chemometrics experiments. This approach is compared to EM-ALS with the result being that INDAFAC
and EM-ALS perform almost equally well in general with the exception that INDAFAC is more accurate
for difficult problems, i.e., higher collinearity and systematically missing patterns of data. In terms of
computational efficiency, EM-ALS is usually faster but becomes slower than INDAFAC as the percentage of
missing entries increases and also depending on the missing entry patterns.

Both INDAFAC and CP-WOPT address the problem of fitting the CP model to incomplete data sets
by solving (2). The difference is that INDAFAC is based on second-order optimization while CP-WOPT is
first-order with a goal of scaling to larger problem sizes.

14



4 CP-WOPT Algorithm

We consider the general N -way CP factorization problem for tensors with missing entries. Let X be a real-
valued tensor of size I1 × I2 × · · · × IN and assume its rank is known to be R.1 Define a nonnegative weight
tensor W of the same size as X such that

wi1i2···iN =

{
1 if xi1i2···iN is known,

0 if xi1i2···iN is missing,
(4)

for all in ∈ {1, . . . , In} and n ∈ {1, . . . , N}.

Our goal is to find matrices A(n) ∈ RIn×R for n = 1, . . . , N that minimize the weighted objective function
(defined below in §4.1), i.e., we want to solve minA(1),...,A(N) fW(A(1), . . . ,A(N)). This objective function can
be considered as a mapping from the cross product of N two-dimensional vector spaces to R, i.e.,

fW : RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R 7→ R.

Although fW is written as a function of matrices, it can be thought of as a vector function where the
parameter vector contains the vectorized and stacked matrices A(1) through A(N), i.e.,[

a
(1)T
1 · · · a

(1)T
R · · · a

(N)T
1 · · · a

(N)T
R

]T
.

In this view, fW : RP 7→ R, where P = R
∑N

n=1 In. We derive the weighted objective function in §4.1 and
its gradient in §4.2. Once the gradient is known, any gradient-based optimization method [22] can be used
to solve the optimization problem.

4.1 Function

The N -way objective function is defined by

fW(A(1),A(2), . . . ,A(N)) =
∥∥∥W ∗ (X− JA(1), . . . ,A(N)K

)∥∥∥2
=

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

w2
i1i2···iN

{
x2i1i2···iN − 2xi1i2···iN

R∑
r=1

N∏
n=1

a
(n)
inr

+

(
R∑

r=1

N∏
n=1

a
(n)
inr

)2}
. (5)

This does not need to be computed element-wise, but rather can be computed efficiently using tensor oper-
ations. If we pre-compute Y = W ∗X and Z = W ∗ JA(1), . . . ,A(N)K, then

fW = ‖Y−Z ‖2 . (6)

Due to the well-known indeterminacies of the CP model, it may also be desirable to add regularization to
the objective function as in [2], but this has not been necessary thus far in our experiments.

4.2 Gradient

We derive the gradient of (5) by computing the partial derivatives of fW with respect to each element of the

factor matrices, i.e., a
(n)
inr

for all in = 1, . . . , In, n = 1, . . . , N , and r = 1, . . . , R. The partial derivatives of

1In practice, the rank is generally not known and is not easily determined. Understanding the performance of the methods
under consideration in that scenario is a topic of future work. Results in [2] indicate that direct optimization methods have an
advantage when the rank is overestimated.

15



% assume Y = W ∗ X is precomputed

Z = W ∗ JA(1), . . . ,A(N)K

% function computation

fW = ‖Y ‖2 − 2 〈 Y,Z 〉 + ‖Z ‖2

% gradient computation

FOR n = 1 TO N

G(n) = −2 Y(n)A
(−n) + 2 Z(n)A

(−n)

END

Figure 3: CP-WOPT computation of function value (fW) and gradient (G(n) ≡ ∂fW
∂A(n) for n ∈ {1, . . . , N}).

It is possible to make this implementation more efficient by computing G(n) = −2 (Y(n) − Z(n))A
(−n).

the objective function fW in (5) are given by

∂fW

∂a
(n)
inr

= 2

I1∑
i1=1

· · ·
In−1∑

in−1=1

In+1∑
in+1=1

· · ·
IN∑

iN=1

w2
i1i2···iN

(
−xi1i2···iN +

R∑
l=1

N∏
m=1

a
(m)
iml

)
N∏

m=1
m6=n

a
(m)
imr

for all in = 1, . . . , In, n = 1, . . . , N , and r = 1, . . . , R.

Once again, the gradient does not need to be computed element-wise. In matrix notation, we can rewrite
the gradient equation as

∂fW

∂A(n)
= 2

(
Z(n) −Y(n)

)
A(−n), (7)

where
A(−n) = A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

for n = 1, . . . , N. The symbol � denotes the Khatri-Rao product and is defined as follows for two matrices
A and B of sizes I ×K and J ×K (both have the same number of columns):

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aN ⊗ bN

]
where ⊗ denotes the vector Kronecker product.

The computations in (6) and (7) exploit the fact that W is binary, see (4), such that W2 ∗X = W ∗X =

Y and W2 ∗ JA(1), . . . ,A(N)K = W ∗ JA(1), . . . ,A(N)K = Z. The primary computation in (7) is called
a “matricized tensor times Khatri-Rao product” and can be computed efficiently [4]. The algorithm is
summarized in Figure 3.

Now that we have the gradient, we can use any first-order optimization method such as nonlinear conju-
gate gradient (NCG) and limited-memory BFGS [22].
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5 Experiments

On both real and simulated three-way data, we assess the performance of the CP-WOPT method in terms
of its ability to recover the underlying factors in the presence of missing data. We demonstrate that even
if a significant percentage, e.g., 70%, of the tensor entries are missing, the CP factor matrices can still be
recovered successfully. Furthermore, we compare our method in terms of efficiency and scalability with the
best known method in the literature.

CP-WOPT is implemented using the Tensor Toolbox [5], based on the gradient and function computations
shown in Figure 3. For optimization, we implemented the nonlinear conjugate gradient (NCG) method with
Hestenes-Stiefel updates [22], globalized via the Moré-Thuente line search [20]. As mentioned in §3, a Gauss-
Newton approach has been evaluated previously by Tomasi and Bro [28] and shown to be effective on the
missing data problem. We compare CP-WOPT against their implementation of the Gauss-Newton approach
called INDAFAC [27].

Both CP-WOPT and INDAFAC are iterative methods. Starting points are generated using the left
singular vectors of X(n) (X unfolded in mode n) with missing entries replaced by zero. The stopping
conditions are set as follows. Both algorithms use the relative change in the function value fW in (2) as
a stopping condition (set to 10−6). In INDAFAC, the tolerance on the infinity norm of the gradient is set
to 10−8 and the maximum number of iterations is set to 103. These choices are based on the values used
in [28]. In CP-WOPT, the tolerance on the two-norm of the gradient divided by the number of entries in
the gradient is set to 10−8, the maximum number of iterations is set to 103, and the maximum number of
function evaluations is set to 104. All experiments were performed using Matlab 7.6 on a Linux Workstation
(RedHat 5.2) with 2 Quad-Core Intel Xeon 3.0GHz processors and 32GB RAM.

5.1 Simulated Data

Table 1: Accuracy in terms of recovering the underlying factor matrices.

Accuracy for Randomly Missing Entries
Missing Data: 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT
Rank: R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10

50× 50× 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 83.3 96.7 100.0 100.0
150× 150× 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 93.3 100.0 100.0

Accuracy for Randomly Missing Fibers
Missing Data: 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT
Rank: R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10 R=5 R=10

50× 50× 50 100.0 100.0 100.0 100.0 93.3 100.0 100.0 100.0 26.7 6.7 86.7 76.7
150× 150× 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 83.3 80.0 100.0 100.0

We randomly generate three-way tensors with different ranks (R = 5, 10), different sizes (50 × 50 × 50
and 150× 150× 150), and varying percentages (10%, 40%, and 70%) and patterns of missing entries (single
entries and fibers, see Figure 1). Factor matrices A, B and C of appropriate sizes are generated randomly
so that the collinearity of the columns of the factor matrices in each mode is set to a particular value, C.
This means that

aT
r as

‖ar‖‖as‖
=

bT
r bs

‖br‖‖bs‖
=

cTr cs
‖cr‖‖cs‖

= C,

for all r 6= s and r, s = 1, . . . , R. We use C = 0.5 in all our experiments as in [28]. The goal is to recover
these underlying factor matrices.
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From each set of factor matrices, a third-order tensor, T = JA,B,CK, is generated. Another tensor,
N ∈ RI×J×K , the same size as T with entries randomly chosen from a standard normal distribution, is then
used to add noise to T as follows:

X = T + (100/η − 1)−1/2 ‖T‖
‖N‖

N,

where η% denotes the noise percentage. The value η = 2 is used in our experiments to be comparable with
the results in [28].

Finally, we set some entries of each generated tensor to missing. We use two different patterns of missing
entries: randomly missing entries and randomly missing fibers. We consider 10%, 40%, and 70% missing
data. In the case of randomly missing fibers, we ignore the cases when a complete slice of a tensor turns out
to be missing because if we miss a whole slice of a tensor, we cannot recover the CP factors. This is similar
to the problem of coherence in the matrix completion problem. For instance, if we miss an entire row (or a
column) of a matrix, we can never recover its true factorization because we do not have enough information.

We say that the factor matrices have been successfully recovered if the following holds. Let Ā, B̄, C̄ be
the recovered factor matrices. We require, for all r ∈ {1, . . . , R}:

sim(r) =
|aT

r ār|
‖ar‖‖ār‖

× |bT
r b̄r|

‖br‖‖b̄r‖
× |cTr c̄r|
‖cr‖‖c̄r‖

(8)

> 0.97 ≈ (0.99)3.

The uniqueness of the CP model enables the direct comparison of the recovered factor matrices with the
factor matrices used to generate the data. However, the CP model has a permutation ambiguity, i.e., there is
an ambiguity in the column orderings, so we have to try all possible permutations of the columns of Ā, B̄, C̄.
The accuracy of a method is defined as the percentage of times it successfully recovers the factor matrices.

Table 1 reports the accuracy of CP-WOPT and INDAFAC. Thirty sets of factor matrices were generated
for each value of R (R = 5, 10). Each entry in the table is the percentage of correctly recovered set of factor
matrices out of the thirty corresponding CP models. In the case of randomly missing entries, CP-WOPT
can perfectly recover the underlying factors with up to 70% missing data. In the case of randomly missing
fibers, CP-WOPT only has trouble with the smaller tensor at 70% missing data. It is worth noting that the
smaller problems are more difficult for the following reason. Suppose we have a tensor of size I × I × I with
proportion M of missing data. Let D be defined as

D =
Number of known tensor entries

Number of variables
=

(1−M)I3

3RI
.

The difficulty of the problem is inversely proportional to D, so that problem becomes easier as I increases as
long as M and R are constant. Figure 4 demonstrates how accuracy changes with respect to D. For instance,
for M = 70% missing data (randomly missing fibers) and R = 5, D is 50 for tensors of size 50 × 50 × 50
and accuracy of CP-WOPT is 86.7%; for tensors of size 150 × 150 × 150, on the other hand, D is 450 and
accuracy of CP-WOPT goes up to 100%. Overall, CP-WOPT does as well or better than INDAFAC in all
cases. We point out, however, that we do not use the initialization suggested in [28] in the results presented
here.

The experiments show that the underlying factors can be captured even if the CP model is fit to a
tensor with significant amount of missing data. This is because the low-rank structure of the tensor is being
exploited. A rank-R tensor of size I × J ×K has R(I + J + K) degrees of freedom. The reason that the
factors can be recovered even with 70% missing data is that there is still a lot more data than variables, i.e.,
the size of the data is equal to 0.3IJK which is much greater than the R(I + J + K) variables. Because
it is a nonlinear problem, we do not know exactly how many data entries are needed in order to recover a
CP model of a low-rank tensor. However, the lower bound for the number of entries needed to recover a
low-rank matrix has been derived in [10].
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Figure 4: Accuracy versus D, i.e., the ratio of the number of known tensor entries to the number of variables,
for INDAFAC and CP-WOPT algorithms for tensors of size 50× 50× 50 and 150× 150× 150. The plots are
for the randomly missing fiber case in Table 1.

Figure 5 and Figure 6 show average computation times for varying levels of missing values M , i.e.,
M = 10%, 40%, 70%, rank R, i.e., R = 5, 10 and data set sizes, i.e., 50 × 50 × 50 and 150 × 150 × 150. For
each value of R and data set size, 30 sets of factor matrices were generated. Each bar in Figure 5 and Figure 6
demonstrates the average computation times of the CP models, which successfully recover the underlying
factor matrices out of those 30 CP models. In all but two cases, the mean computation times for CP-WOPT
were significantly lower than those for INDAFAC using a two-sample t-test at a 95% confidence level. For
the two cases where no significant difference in mean computation time was observed (70% missing data for
size 50 × 50 × 50 tensors using ranks R = 5, 10), the results may be biased by too few samples resulting in
two few degrees of freedom (df) in the tests. For those cases, INDAFAC successfully recovered the factors
in only 8 of 30 (p-value=0.2117, df=10.04, 95% CI=[−0.35,∞) ) and 2 of 30 (p-value=0.2127, df=1.03, 95%
CI=[−15.7,∞) ) models, respectively. See Table A.1 and Table A.2 in Appendix A for the detailed timing
information, including results from the t-tests.

As R increases, we also see that the increasing computational cost of INDAFAC grows faster than that
of CP-WOPT. That is mainly because for an Nth-order tensor X of size I1 × I2 × · · · × IN , the cost
per function/gradient evaluation for CP-WOPT is O(NQR), where Q =

∏N
n=1 In while each iteration of

INDAFAC costs O(P 3), where P = R
∑N

n=1 In. Note that INDAFAC gets faster as the amount of missing
data increases and data gets sparse. On the other hand, CP-WOPT implementation does not yet exploit
the data sparsity; therefore, does not behave in the same way. We plan to address this issue in near future
by extending our implementation to sparse data sets.

We also test whether CP-WOPT scales even to larger data sets and observe that it recovers the underlying
factor matrices for a data set of size 500 × 500 × 500 (with M = 10%, 40%, 70% randomly missing entries)
successfully in approximately 80 minutes on average for R = 5. On the other hand, INDAFAC cannot be
used to fit the CP model to data sets of that size due to memory problems.
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Figure 5: Randomly Missing Entries: Average computation time of INDAFAC (blue) and CP-WOPT (red)
for varying levels of missing values, ranks and data set sizes.

5.2 EEG Data

In this section, we use CP to model an EEG data set in order to observe the gamma activation during pro-
prioceptive stimuli of left and right hand. The data set contains multi-channel signals (64 channels) recorded
from 14 subjects during stimulation of left and right hand (i.e., 28 measurements in total). For each mea-
surement, the signal from each channel is represented in both time and frequency domains using continuous
wavelet transform and vectorized (forming a vector of length 4392); in other words, each measurement can
be represented by a channel by time-frequency matrix. The data for all measurements can then be arranged
as a channels by time-frequency by measurements tensor of size 64× 4392× 28. For details about the data,
see [21].

We model the data using a CP model with R = 3, denoting A, B and C as the extracted factor matrices
corresponding to the channels, time-frequency and measurements modes, respectively. We demonstrate the
columns of the factor matrices in each mode in Figure 7-A. The 3-D head plots correspond to the columns of
A, i.e., coefficients corresponding to the channels ranging from low values in blue to high values in red. The
time-frequency domain representations correspond to the columns of B rearranged as a matrix and again
ranging from low values in blue to high values in red. The bar plots represent the columns of C. Note that
3 rows of images in Figure 7-A (3-D head plot, matrix plot, bar plot) correspond to columns r = 1, 2, 3 of
the factor matrices (A, B, C), respectively. Observe that the first row of images highlights the differences
between left and right hand stimulation while the second and third rows of images pertain to frontal and
parietal activations that are shared by the stimuli. Unlike [21], we do not use nonnegativity constraints and
we convert tensor entries from complex to real by using the absolute values of the entries and center the
data across the channels mode before the analysis.

It is not uncommon in EEG analysis that the signals from some channels are ignored due to malfunctioning
of the electrodes. This will create missing fibers in a tensor when we arrange the data as described above (as
in Figure 1). To reflect such cases of missing data, we randomly set data for one or more of the 64 channels
for each measurement to be missing, center the tensor across the channels mode ignoring the missing entries
and then fit a CP model with R = 3 to the resulting data using the CP-WOPT algorithm. Let Ā, B̄, C̄ be
the factor matrices extracted from a tensor with missing entries using the CP-WOPT algorithm. Table 2
illustrates how the number of missing channels per measurement affects the similarity between the columns of
factor matrices extracted from missing data, i.e., Ā, B̄, C̄, and the columns of factor matrices extracted from
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Figure 6: Randomly Missing Fibers: Average computation time of INDAFAC (blue) and CP-WOPT (red)
for varying levels of missing values, ranks and data set sizes.

the original data with no missing entries, i.e., A,B,C. The similarity is defined in terms of the measure given
in (8). For each number of missing channels, we generate 50 tensors with randomly missing channels and
extract the corresponding 50 sets of Ā, B̄ and C̄. The values given in Table 2 are the average similarities
between A,B,C and those 50 sets of Ā, B̄ and C̄. We observe that as the number of missing channels
increases, the similarities decrease as expected. However, even up to 30 missing channels per measurement,
or about 47% of the data, the extracted factor matrices match with the original factor matrices extremely
well, with similarity measures still above 0.90. Furthermore, Figure 7-B, images for Ā, B̄ and C̄ analogous
to those for A,B,C in Figure 7-A, illustrates that the underlying brain dynamics are still captured even
when 30 channels per measurement are missing. Note that only slight local distortions can be observed with
respect to the corresponding images for the original factor matrices in Figure 7-A.

It can be argued that the activations of the electrodes are highly correlated and even if some of the
electrodes are removed, the underlying brain dynamics can still be captured. However, in these experiments
we do not set the same channels to missing for each measurement; the channels are randomly missing from
each measurement. On the other hand, CP decompositions may not be able to recover factors as well
for data with certain patterns of missing values, e.g., missing the signals from the same side of the brain
for all measurements. However, it is not very likely to have such data. We still note that the success of
the proposed approach depends on the patterns of missing entries, which is the case for any factorization
approach proposed for handling missing data.

Finally, it may also look reasonable to impute missing entries simply with the mean rather than ignoring
them. However, this is not a valid approach especially as the percentage of missing entries increases [25],
which we also observe in Table 3. Let Â, B̂, Ĉ be the factor matrices extracted from data with missing
entries when missing entries are replaced by the mean across the channel mode. Since the data is centered
across the channels mode, missing entries are replaced with zeros. Table 3 shows how the similarities (again
defined in terms of (8)) between the columns of Â, B̂, Ĉ and the columns of the factor matrices extracted
from the original data with no missing entries, i.e., A,B,C, change as the amount of missing data increases.
The same data sets used in Table 2 are again used here for comparison. We can see that when there is large
amount of missing data, the structure in the original data can be captured better by ignoring the missing
entries rather than replacing them with the means.
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(a) No missing entries (b) 30 channels missing per measurement

Figure 7: Columns of the CP factor matrices (A, B and C with R = 3) extracted from the EEG data
arranged as a channels by time-frequency by measurements tensor with. The 3-D head images were drawn
using EEGLab [12].

Table 2: CP-WOPT EEG Results: The similarity between the columns of Ā, B̄, C̄ and A,B,C when missing
entries are ignored and only the known entries are modeled. The similarity measure is defined in (8).

Missing sim(r = 1) sim(r = 2) sim(r = 3)
Channels

1 0.9989 0.9995 0.9991
10 0.9869 0.9936 0.9894
20 0.9560 0.9826 0.9697
30 0.9046 0.9604 0.9312
40 0.6192 0.8673 0.7546

Table 3: Imputation EEG Results: The similarity between the columns of Â, B̂, Ĉ and A,B,C when missing
entries are replaced with the mean across the channel mode. The similarity measure is defined in (8).

Missing sim(r = 1) sim(r = 2) sim(r = 3)
Channels

1 0.9970 0.9984 0.9982
10 0.9481 0.9729 0.9752
20 0.9002 0.9475 0.9371
30 0.6435 0.8719 0.8100
40 0.3045 0.7126 0.5699
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6 Conclusions

The closely related problems of matrix factorizations with missing data and matrix completion have recently
been receiving a lot of attention. In this paper, we consider the more general problem of tensor factorization
in the presence of missing data, formulating the canonical tensor decomposition for incomplete tensors as a
weighted least squares problem. Unlike imputation-based techniques, this formulation ignores the missing
entries and models only the known data entries. We develop a scalable algorithm called CP-WOPT using
gradient-based optimization to solve the weighted least squares formulation of the CP problem.

Our numerical studies suggest that the proposed CP-WOPT approach is accurate and scalable. CP-
WOPT recovered the underlying factors successfully even with 70% missing data and scaled to large dense
tensors with more than 100 million entries, i.e., 500×500×500. Moreover, CP-WOPT is faster than the best
alternative approach which is based on second-order optimization. Most importantly, we have demonstrated
that the factors extracted by the CP-WOPT algorithm can capture brain dynamics in EEG analysis even if
signals from some channels are missing, suggesting that practitioners can now make better use of incomplete
data in their analyses.

In future studies, we plan to extend our results in several directions. Because it is naturally amenable to
this, we will extend our method to large-scale sparse tensors in the case where the amount of missing data
is either very large or very small (i.e., W or 1−W should also be sparse). We will also include constraints
such as non-negativity and penalties to encourage sparsity, which enable us to find more meaningful latent
factors from large-scale sparse data. Finally, we will consider the problem of collective factorizations with
missing data, where we are jointly factoring multiple tensors with shared factors.
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A Detailed numerical results

In this section, we present the detailed timing results corresponding to the plots in Figure 5 and Figure 6.
Table A.1 and Table A.2 contain the average computation times (± sample standard deviations) for runs using
INDAFAC and CP-WOPT. For each comparison of INDAFAC and CP-WOPT (i.e., each cell of the tables), 30
runs were performed. All statistics reported in the tables—averages, sample standard deviations, p-values,
and degrees of freedom(df)—were computed using only those runs in which the factors were successfully
recovered. Two-sample t tests using 95% confidence levels were performed for each comparison, where the null
hypothesis tested was that the mean computation time for runs using INDAFAC was greater than the mean
time using CP-WOPT. The t statistics were computed assuming unequal variances for the INDAFAC and
CP-WOPT runs (as confirmed by F tests on the sample standard deviations), and thus the effective degrees
of freedom (df) reported in the tables are those computed using the standard Satterthwaite approximation.

Table A.1: Randomly Missing Entries: Average computation time (± standard deviation) to fit an R-
component CP model to a tensor with randomly missing entries. The p-values and effective degrees of
freedom (df) are those computed for the two-sample t-tests using 95% confidence levels.

Time for Randomly Missing Entries (sec)
Rank: R = 5

Missing Data : 10% 40% 70%
INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT

50× 50× 50 5.9± 1.5 2.9± 0.6 4.5± 0.4 2.9± 0.6 4.6± 0.9 3.7± 0.6
p-value: 0.0000, df: 37.45 p-value: 0.0000, df: 55.14 p-value: 0.0000, df: 42.23

150× 150× 150 285.7± 30.8 89.4± 16.1 225.7± 27.0 93.0± 17.9 203.0± 63.6 118.8± 21.7
p-value: 0.0000, df: 43.79 p-value: 0.0000, df: 50.34 p-value: 0.0000, df: 35.66

Rank: R = 10
Missing Data : 10% 40% 70% 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT
50× 50× 50 21.4± 3.2 7.7± 0.9 18.0± 2.9 8.7± 1.7 13.3± 2.3 9.1± 1.5

p-value: 0.0000, df: 33.51 p-value: 0.0000, df: 46.48 p-value: 0.0000, df: 46.84
150× 150× 150 1020.5± 168.4 233.3± 43.1 765.4± 95.9 245.8± 35.5 643.6± 134.0 291.6± 47.0

p-value: 0.0000, df: 32.79 p-value: 0.0000, df: 36.82 p-value: 0.0000, df: 33.14

Table A.2: Randomly Missing Fibers: Average computation time (± standard deviation) to fit an R-
component CP model to a tensor with randomly missing fibers. The p-values and effective degrees of
freedom (df) are those computed for the two-sample t-tests using 95% confidence levels.

Time for Randomly Missing Fibers (sec)
Rank: R = 5

Missing Data : 10% 40% 70%
INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT

50× 50× 50 4.8± 0.6 2.2± 0.4 4.4± 0.7 2.7± 0.5 4.0± 0.9 3.7± 0.8
p-value: 0.0000, df: 47.74 p-value: 0.0000, df: 49.03 p-value: 0.2117, df: 10.04

150× 150× 150 275.7± 34.2 84.0± 26.9 209.5± 18.0 80.2± 13.4 167.8± 20.2 105.2± 29.0
p-value: 0.0000, df: 54.99 p-value: 0.0000, df: 53.69 p-value: 0.0000, df: 51.52

Rank: R = 10
Missing Data : 10% 40% 70%

INDAFAC CP-WOPT INDAFAC CP-WOPT INDAFAC CP-WOPT
50× 50× 50 19.6± 3.8 6.0± 1.9 15.2± 1.7 6.8± 1.0 13.3± 4.6 9.2± 1.8

p-value: 0.0000, df: 42.01 p-value: 0.0000, df: 45.76 p-value: 0.2127, df: 1.03
150× 150× 150 989.4± 160.5 201.2± 40.3 733.6± 87.6 241.1± 26.7 496.3± 47.2 234.6± 38.8

p-value: 0.0000, df: 32.64 p-value: 0.0000, df: 34.35 p-value: 0.0000, df: 44.29
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