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Abstract

We consider the general problem of minimizing a real function subject to bound
constraints. We are motivated by applications in which the derivatives of the objective
function are unavailable or expensive to compute. This can occur, for example, when
the function is not given analytically and is evaluated by running a simulation. The
DIRECT algorithm by Jones, Pertunnen, and Stuckman is a global derivative-free op-
timization algorithm. It is a deterministic algorithm that samples the space following
a scheme that is justifiable theoretically in case of Lipschitz continuous functions. In
practice, DIRECT has proven to be efficient, with respect to the number of function
evaluations, in finding a global minimum for a wide variety of functions. We extend
the DIRECT algorithm to make use of additional free trial points that are made avail-
able when running DIRECT simultaneously with other optimization algorithms. We
compare several deterministic and randomized variants of the DIRECT algorithm that
use the external trial points (DUET). We present experimental results with external
trial points that are sampled at random to show an improvement of DUET over the
performance of the DIRECT algorithm.
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1 Introduction

It is of great interest in applications in science and engineering to be able minimize gen-
eral non-convex real functions. DIRECT, by Jones, Pertunnen, and Stuckman [12], is a
derivative-free global optimization algorithm for minimizing real functions subject to simple
bound (or box) constraints. DIRECT employs a deterministic sampling scheme which has
been shown to cluster around global optima. Moreover DIRECT is guaranteed to eventually
converge to a global optimum [12, 4]. The sampling scheme involves the iterative refinement
of the feasible space (a hyperrectangle) into smaller hyperrectangles. At each iteration a
subset of the hyperrectangles that partition the space are selected to be further refined.
The selection of hyperrectangles is done according to a rule that is theoretically justified for
Lipschitz continuous functions.

Lipschitz optimization aims to find a global optimum while using the Lipschitz constant
or an estimate [10]. Lipschitzian optimization exploits the bound that can be computed over
a subset of the feasible region based on a given function value and the Lipschitz constant.
The DIRECT algorithm can be viewed as Lipschitzian optimization that tries all possible
values of the Lipschitz constant. This is accomplished by a selection rule that corresponds
to selecting hyperrectangles that lie on the lower convex hull of a plot of rectangle size
versus rectangle function value. A user defined parameter is used to balance the tradeoff of
considering unexplored large rectangles (global search) versus rectangles that contain lowest
function values (local search).

Direct search algorithms can be viewed as sampling methods in which function values
are evaluated at a mesh that is iteratively refined. We would like the points sampled to
cluster around global optima. When running optimization algorithms in parallel, hybrid
optimization involves the use of information made available by other algorithms. We consider
extensions to DIRECT as a sampling method so that it may take advantage of external trial
points that are freely available.

In Section 2, we start with a description of the bound constrained global minimization
problem and give an overview of the DIRECT algorithm by Jones et al. In Section 3,
we describe our problem of extending DIRECT to use external trial points that are made
available when running other optimization algorithms in parallel. We describe three different
variants of the DUET (DIRECT Using External Trial-points) class of algorithms. We present
an experimental study in Section 4, comparing the performance of the three different variants
and the DIRECT algorithm by Jones et al. We present conclusions in Section 5.
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2 Problem description and background

We consider the global optimization problem of minimizing f(x), where f : Rn → R, subject
to the bound constraints li ≤ xi ≤ ui for i = 1, ..., n.

2.1 Background: Lipschitzian optimization and DIRECT

Lipschitzian optimization assumes f(x) is Lipschitz continuous over the feasible region, with
a known Lipschitz constant C so that for every x, y ∈ Rn such that li ≤ xi, yi ≤ ui for all
i = 1, . . . , n, the following holds:

|f(y)− f(x)| ≤ C|y − x|.

The DIRECT algorithm by Jones et al. [12] does not require a priori knowledge of the
Lipschitz constant. It successively partitions the search space (a hyperrectangle) into smaller
hyperrectangles. At each iteration, a subset of potentially optimal hyperrectangles, see Def-
inition 2.1, is chosen to be subdivided. Jones et al. compute a lower bound on the function
value that can be obtained in each hyperrectangle using the function value of a hyperrect-
angle, denoted f(R), and the distance, denoted size(R), from the center point, denoted
center(R), to the vertices of R. More recent work has extended the definition of potentially
optimal rectangles to use various measures of rectangle size, e.g., the L∞ distance between
a pair of vertices [8]. Jones et al. [12], use f(R) = f(center(R)), for the rectangle values
f(R). We generalize the rule to use function values other than at the center points.

Definition 2.1 A hyperrectangle R is said to be potentially optimal if, for some constant
K > 0 and all hyperrectangles R′, it satisfies

f(R)−K · size(R) ≤ f(center(R′))−K · size(R′), and (2.1)

f(R)−K · size(R) ≤ fmin − ε|fmin|, (2.2)

where ε is a positive constant and fmin is the current best function value.

Finding potentially optimal rectangles can be done by solving a two dimensional convex
hull problem. More specifically, we look for a lower convex hull in the function value versus
hyperrectangle space space. Finding the lower convex hull in two dimensions can be done in
linear time1. In the convex hull computation of function values there is an additional point,
in the size, function value space, (0, fmin − ε|fmin|), which corresponds to equation (2.2).
The epsilon value suggested by Jones et al. is 10−4, which is the value that we use in our
experimental results.

1Jones et al. [12] make use of Graham scan which is an O(n lg n) algorithm. We note that we can make
use of a simple linear time algorithm for finding the lower convex hull if we maintain the hyperrectangles
sorted by size.
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2.2 An iterative version of DIRECT for parallel function
evaluation

Algorithm 2.1 implements an iteration of the DIRECT algorithm which allows for parallel
function evaluations. The algorithm is initialized with partition containing a single hyper-
cube R = [0, 1]n, corresponding to the entire feasible region after normalizing each dimension
to [0, 1], and having a known function value f(R). The partition is updated each iteration
by removing the potentially optimal hyperrectangles and replacing them with the smaller
hyperrectangles into which they have been refined2. Algorithm 2.1 returns the next set of
points to be evaluated, denoted by newPoints. It is then called with the set evalPoints
containing the same points once they have been evaluated (in the first iteration this set
would be initialized to be empty).

Algorithm 2.1 Parallel DIRECT
in: evalPoints
out: newPoints
ContainingRects← ∅
for all p ∈ evalPoints do

Find rectangle R ∈ partition s.t. p ∈ R
Save p as a subpoint of R.
ContainingRects← ContainingRects ∪ {R}

end for
for all R ∈ ContainingRects do

Using subpoints order the long sides of R as i1, i2, ..., im such that wi1 ≤ wi2 ≤ ... ≤ wim
Rnew ← Divide(R, {i1, i2, ..., im)}
partition← (partition \ {R}) ∪Rnew

end for
potOptimal← FindPotOptimalRect(partition)
for all R ∈ potOptimal do
newPoints← newPoints ∪ {p ∈ R|p is a subpoint of R}

end for

We define subpoints in order to describe the points that the DIRECT algorithm selects
to be evaluated at each iteration.

Definition 2.2 A point pi ∈ R ⊂ Rn is called a subpoint of hyperrectangle R, along dimen-
sion i, if pi ∈ {center(R)± δ

3
ei}, where δ is the side length of R along dimension i.

The DIRECT algorithm by Jones et al. [12] subdivides each long side length along dimension
i ∈ I, where I is the set of dimensions corresponding to the long side length, following an

2In the implementation we actually store a fast ternary tree structure for the purpose of finding the
Rectangle that contains a point. We also store the current partition sorted by size and then by function
value. In order to save on insertions into the partitions we only insert a rectangle once it has a function
value.

12



increasing order of:

wi = min{f(p) : p ∈ {center(R)± δ

3
ei}}. (2.3)

The Divide procedure for subdividing a hyperrectangle used by our DIRECT implemen-
tation generalizes the procedure of Jones et al. [12] and is described in the next section.
When used in the above Algorithm 2.1, it is exactly the same as the Divide procedure in
Jones’ et al., unless we add additional trial points or change the order of the hyperrectangle
sides (which increases in wi).

In Figure 2.1 the first three nontrivial iterations of Algorithm 2.1 are shown. In Iteration
1, the four subpoints of the hyperrectangle corresponding to the entire feasible region are
returned as newPoints. In Iteration 2, the subhyperrectangle to the right of the center is
largest (along with the one on the left) and also has the minimum function value and therefore
is the only potentially optimal hyperrectangle. The lower convex hull of hyperrectangles, in
the function value versus hyperrectangle size space, that determines the set of potentially
optimal rectangles in Iteration 3 is shown in Figure 2.2.

10

(a) Iteration 1

8

9

7

5

(b) Iteration 2 (c) Iteration 3

Figure 2.1. Example of the (parallel) DIRECT algorithm. The first 3 nontrivial iterations
of the algorithm are shown. evalPoints and newPoints are shown as blue and orange
points, respectively. Black points represent existing points (that have been evaluated in
previous iterations). The current subdivision is shown as a dotted line and potentially
optimal rectangles are shaded.

In practice, the DIRECT algorithm is effectively used for optimization of functions that
are not necessarily Lipschitz continuous. As a derivative-free optimization method, it can
be effectively used for functions that are not given in analytical form. The function values
could be expensive to compute, for example, the function may be the output of a running
of a simulation.

13



hyperrectangle size

function value

fmin − ε|fmin|
5

7

9
10

Figure 2.2. An example of a convex hull computation for selecting potentially optimal
rectangles in Iteration 3 of Figure 2.1.

14



3 Extending DIRECT for hybrid optimization

When optimizing in parallel, the DIRECT algorithm may be run concurrently with a variety
of other local and global optimization algorithms. When function calls are expensive, we
would like the DIRECT algorithm to make use of additional free function evaluations that
are made available by the other algorithms that are running simultaneously. In other words,
we would like to extend the DIRECT algorithm to make use of external trial points (i.e.,
additional function evaluations from other optimization methods). We call the resulting
algorithm DUET, short for DIRECT Using External Trial points. Our purpose it to inves-
tigate the effect of using the free function evaluations on the convergence of the algorithm
to a global optimum.

Before we proceed, we need to modify our definition of f(R). As you recall, we previously
specified that f(R) = f(center(R)), but now we need to account for the additional points.
We denote the set of all evaluated points in hyperrectangle R as knownPoints(R). We will
make use of the following generalized definition of f(R):

f(R) =

{
+∞ if knownPoints(R) = ∅,
min{f(p) : p ∈ knownPoints(R)} otherwise.

(3.1)

3.1 Dividing rectangles and splitting orders

Before we discuss the algorithms in detail, we present a version of the rectangle division
procedure that has been modified to accommodate the extra points. DIRECT refines (i.e.,
subdivides) each potentially optimal rectangle into smaller rectangles. We generalize Jones’
Divide algorithm [12], to subdivide hyperrectangles following a given order of the long side
lengths of the hyperrectangle. The resulting algorithm is given in Algorithm 3.1.

Algorithm 3.1 Divide
In: rectangle R, ordered set of dimensions corresponding to the long sides of R: {i1, i2, ..., im}
Out: rectangleRefinement, the set of sub-hyperrectangles

1: rectangleRefinement← ∅
2: for k = 1, 2, ...,m do
3: Divide the rectangle R along dimension ik into thirds, and denote the resulting rectangles

R1, R2, R3. where R2 is the center rectangle.
4: Assign each point in knownPoints(R) to one of the containing rectangles (if in the intersec-

tion of 2 rectangles assign the point arbitrarily) in R1, R2, R3

5: rectangleRefinement← rectangleRefinement ∪ {R1, R3}
6: R← R2

7: end for
8: rectangleRefinement← rectangleRefinement ∪ {R}

15



Note that when the given ordering satisfies wi1 ≤ wi2 ≤ ... ≤ wim , and knownPoints(R) =
{center(R)}, then the algorithm is equivalent to the Divide algorithm of Jones et al. [12].

3.2 A simple extension to use external trial points (DUET-naive)

A minor modification to Algorithm 2.1 produces a new variant we call DUET-naive; the
change is to update the rectangle function value with the minimum function value of all
points contained in the rectangle. Algorithm 3.1, which assigns the lowest function value of
all known points contained in the rectangle R, to f(R). By setting f(R) be the minimum
function value over all p ∈ knownPoints(R), we bias the search of DIRECT-naive to further
explore hyperrectangles which contain low-valued points from external sources. Although
DUET-naive does not change the general scheme of subdivision of hyperrectangles and sam-
pling of subpoints of DIRECT, using the set of external trial points at each iteration, denoted
as additionalPoints, affects the choice of potentially optimal hyperrectangles. DUET-naive
is present in Algorithm 3.2.

Algorithm 3.2 DUET-naive
in: evalPoints, additionalPoints
out: newPoints

1: ContainingRects← ∅
2: for all p ∈ evalPoints do
3: Find rectangle R ∈ partition s.t. p ∈ R
4: Save p as a subpoint of R.
5: knownPoints(R)← knownPoints(R) ∪ {p}
6: ContainingRects← ContainingRects ∪ {R}
7: end for
8: for all p ∈ additionalPoints do
9: Find rectangle R ∈ partition s.t. p ∈ R.

10: knownPoints(R)← knownPoints(R) ∪ {p}
11: end for
12: for all R ∈ ContainingRects do
13: Using subpoints order the longest sides of R, i1, i2, ..., im such that wi1 ≤ wi2 ≤ ... ≤ wim
14: Rnew ← Divide(R, {i1, i2, ..., im})
15: partition← (partition \ {R}) ∪Rnew
16: end for
17: potOptimal← FindPotOptimalRect(partition)
18: for all R ∈ potOptimal do
19: newPoints← newPoints ∪ {p ∈ R|p is a subpoint of R}
20: end for

Figure 3.1 shows the first three iterations of Algorithm 3.2. Notice that the choice of
potentially optimal hyperrectangles differs from the corresponding iteration shown in Figure
2.1 because the smaller sized subrectangle to the right of the center now has a lower function
value derived from an external trial point (with a function value of 4).

16



10

8

11

(a) Iteration 1

8

9

7

5

6

4

(b) Iteration 2 (c) Iteration 3

Figure 3.1. Example of the DUET-naive algorithm. The first three nontrivial iterations of
the algorithm are shown. evalPoints and newPoints are shown as blue and orange points,
respectively. additionalPoints are shown as blue triangles. Black points and triangles
represent existing points (that have been evalPoints and additionalPoints, respectively,
in a previous iteration). The current subdivision is shown as a dotted line and potentially
optimal rectangles are shaded. The point with the lowest function value, in its containing
rectangle R (and thus used to derive f(R)) is circled.

It becomes apparent in the example that we may be able to save on the evaluation of
subpoints where there are already existing additional points. For example, notice that this
is very close existing point to the subpoint that is slated for evaluation in the left side of the
bottom rectangle in Iteration 3.

3.3 Random splitting to save on function evaluations (DUET-RS)

DIRECT uses subpoint values to order the (long) hyperrectangle sides to be subdivided as
well as for setting f(R) for each sub-hyperrectangle R that results from subdivision. We
may be able to save on function evaluations at each iteration if we forego the ordering of
dimensions according to the subpoint function values. Instead, in DUET-RS, we let the
order of splits be random. This saves function evaluations when additional points already
exist in the resulting sub-hyperrectangles, as shown in figure 3.2. Then we only need to
evaluate center points for those new rectangles that do not contain any additional points.

The complete description in pseudo code of DUET-RS is given by Algorithm 3.3. DUET-
RS subdivides the potentially optimal hyperrectangles and then only request to evaluate
subpoints in hyperrectangles that have knownPoints(R) = ∅.

We show the first three nontrivial iterations of DUET-RS in Figure 3.3. In Iteration 1, we
only need to evaluate three subpoints once we determine the subdivision into subrectangles,
by making use of the top additional point. Since we some subpoints are note evaluated, not
only the ordering of splits may change but also f(R) for some of the rectangles. The bottom
subrectangle in Iteration 2 and both potentially optimal rectangles in Iteration 3 only have
one long dimension. In this case it is clear that there is only one possible ordering of splits.

17



c
p1

p2

Figure 3.2. Example showing use of additional points by DUET-RS. Splitting of the
rectangle is shown using solid lines. Subpoints are shown as orange dots. p1 and p2 are
additional points that can each save on a function evaluation of the subpoint in their
corresponding sub-hyperrectangles.

10

8

11

(a) Iteration 1

8

9

7

6

4

(b) Iteration 2 (c) Iteration 3

Figure 3.3. Example of the DUET-RS algorithm. The first three nontrivial iterations of
the algorithm are shown.
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Algorithm 3.3 DUET-RS
in: evalPoints, additionalPoints
out: newPoints

1: for all p ∈ evalPoints do
2: Find rectangle R ∈ partition s.t. p ∈ R
3: knownPoints(R)← knownPoints(R) ∪ {p}
4: end for
5: for all p ∈ additionalPoints do
6: Find rectangle R ∈ partition s.t. p ∈ R.
7: knownPoints(R)← knownPoints(R) ∪ {p}
8: end for
9: potOptimal← FindPotOptimalRect(partition)

10: for all R ∈ potOptimal do
11: Generate a random ordering of the long sides of R, {i1, i2, ..., im}.
12: Rnew ← Divide(R, {i1, i2, ...im})
13: partition← (partition \ {R}) ∪Rnew
14: for all R′ ∈ Rnew do
15: if knownPoints(R′) = ∅ then
16: newPoints← newPoints ∪ {center(R′)}.
17: end if
18: end for
19: end for

19



3.4 Using subpoint estimates to save on function evaluations
(DUET-SE)

The ordering of sides to be split in the DIRECT algorithm (i.e., in increasing order of
wi) has the desirable effect that dimensions that correspond to a lower minimum function
value of their subpoints will be contained in larger subrectangles after subdivision. In the
next iteration the larger rectangles that also have low function values will most likely be
potentially optimal. This in turn will cause the rectangles with lower function values to be
further subdivided. We would like to preserve the ordering of dimensions of DIRECT while
making use of additional points to save on function evaluations when possible. We would
like to estimate subpoints by trial points that are sufficiently close to subpoints. When an
existing point is sufficiently far from a subpoint to be estimated, after subdivision, it is not
clear that it will be contained in the same sub-hyperrectangle as the subpoint. A simple two
dimensional example is shown in Figure 3.4.

Figure 3.4. For the point in the top left corner, it is not clear in which rectangle the
point will fall into, given that there are two possible distinct orderings for a hyperrectangle
with two long sides.

Therefore, we wish to only consider additional points for which there is no ambiguity
in knowing which subrectangle it will be in. As shown in Figure 3.5, the gray regions are
unambiguous. The point p1 will be in the same rectangle as the left subpoint no matter
what order the rectangle is divided; we therefore say that p11 is a subpoint estimate. We call
the hypercube containing such points the subpoint estimation region.

The variant of DIRECT that uses subpoint estimates and additional points is given in
Algorithm 3.4. The algorithm differs from Algorithm 2.1 in that it checks for each potentially
optimal hyperrectangle and each of its subpoints whether it can be estimated by an existing
point. In addition, since it is not necessarily the case that center(R) ∈ knownPoints(R) for
any given hyperrectangle R, if knownPoints(C(R)) = ∅, then center(R) will also need to
be evaluated and thus added to newPoints.

An example of the first three non-trivial iterations of the algorithm are shown in Figure
3.6. In Iteration 1, the top subpoint does not need to be evaluated since the top additional
point lies within its corresponding subpoint estimation region. In Iteration 3, the subrect-
angle on the left does require any function evaluations because all of its subpoints have
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p1
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Figure 3.5. Subpoint estimation regions (hypercubes) are shown as the shaded rectangles.
Subpoints are shown as orange dots, and additional points as triangles. Point p1 is a
subpoint estimate. Point p2 cannot be a subpoint estimate (at this iteration) because it is
not contained in a subpoint estimation region.
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(a) Iteration 1
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(b) Iteration 2 (c) Iteration 3

Figure 3.6. Example of the DUET-SE algorithm. The first three nontrivial iterations of
the algorithm are shown.

subpoint estimates. For the smaller subrectangle to the right of the center point, all four
subpoints need to be evaluated because the existing additional point is not contained in any
of the subpoint estimation regions.
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Algorithm 3.4 DUET-SE
in: evalPoints, additionalPoints
out: newPoints

1: ContainingRects← ∅
2: for all p ∈ evalPoints do
3: Find rectangle R ∈ partition s.t. p ∈ R
4: Save p as a subpoint of R
5: knownPoints(R)← knownPoints(R) ∪ {p}
6: ContainingRects← ContainingRects ∪ {R}
7: end for
8: for all R ∈ ContainingRects do
9: Order the longest sides of R, i1, i2, ..., im such that wi1 ≤ wi2 ≤ ... ≤ wim

10: Rnew ← Divide(R, {i1, ..., im})
11: partition← (partition \ {R}) ∪Rnew
12: end for
13: for all p ∈ additionalPoints do
14: Find rectangle R ∈ partition s.t. p ∈ R
15: knownPoints(R)← knownPoints(R) ∪ {p}
16: end for
17: potOptimal← FindPotOptimalRect(partition)
18: for all R ∈ potOptimal do
19: for all p ∈ R s.t. p is a subpoint of R do
20: if p′ ∈ knownPoints(R) and p′ is a subpoint estimate of p then
21: Save p′ as a subpoint estimate of p
22: else
23: newPoints← newPoints ∪ {p}
24: end if
25: if knownPoints(C(R)) = ∅ then
26: newPoints← center(R)
27: end if
28: end for
29: end for
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4 Empirical study

We report our empirical results for the Dixon dataset which contains nine different test
functions. For each problem we run our algorithms with a number of x × n free external
trial points, per iteration, where x = 0, 1, 2, 3, 6, 10. We report our statistics for the three
different variants for each one of these settings over 20 runs. Note that if no points are
added (i.e., x = 0), DUET-naive and DUET-SE are identical to DIRECT. We also report
the Borda counts over the runs where we compare the three DUET variants and DIRECT.
Each method is assigned a score in {4, 3, 2, 1}, corresponding to its rank (the first ranking
being assigned the highest score). When two or more methods tie then they are assigned
the median score of the ranks that are tied.

We show our experimental results in the following tables and figures. A summary is given
in Table 4.10 where we summarize the empirical results in a table for all of the problem sets,
the three variants of DUET and the DIRECT algorithm. The table shows the average
and standard deviation of the number of evaluations normalized with respect to DIRECT.
The Borda counts are also summarized over all of the test problems. Both measures show
that DUET-SE outperforms DUET-naive and DUET-RS. DIRECT outperforms DUET-SE
in terms of the average number of evaluations. However, the Borda count shows a clear
advantage of DUET-SE. This implies that DUET-SE actually wins most of the time. When
DUET-SE loses, it can perform quite poorly on some of the runs. This is also evident by
the relatively high standard deviation of the (scaled) number of evaluations.
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Table 4.1. Performance on the Branin function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 180
Borda Count 52 40 38 31 42 35 238

DUET-naive

Eval AVG 180 178.5 191.9 175.8 193.4 186.7 184.4
Eval SD 0 21.46 61.12 41.7 67.96 56.69 47.37
Free AVG 0 32.6 70 99.3 215.4 350 127.9
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 0.9917 1.066 0.9767 1.074 1.037 1.024
Scaled Eval SD 0 0.1192 0.3395 0.2316 0.3775 0.3149 0.2631
Borda Count 52 45.5 41 41 41 39.5 260

DUET-RS

Eval AVG 189.2 180.2 160.9 142 154.9 118.2 157.6
Eval SD 25.88 31.46 54.39 50.14 67.01 56.94 54.14
Free AVG 0 31.5 61.6 93.9 218.4 328 122.2
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1.051 1.001 0.8942 0.7889 0.8608 0.6569 0.8755
Scaled Eval SD 0.1438 0.1748 0.3022 0.2785 0.3723 0.3163 0.3008
Borda Count 44 47.5 56 64.5 59 63.5 334.5

DUET-SE

Eval AVG 180 166.4 170.6 145.2 152.4 136.1 158.4
Eval SD 0 21.28 65.71 39.4 50.76 59.28 47.07
Free AVG 0 32.8 70 100.2 223.8 374 133.5
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 0.9247 0.9475 0.8064 0.8467 0.7561 0.8802
Scaled Eval SD 0 0.1182 0.3651 0.2189 0.282 0.3293 0.2615
Borda Count 52 67 65 63.5 58 62 367.5
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Figure 4.1. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
Branin dataset.
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Table 4.2. Performance on the Shekel 5 function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 152
Borda Count 60 41.5 55 46.5 54.5 59 316.5

DUET-naive

Eval AVG 152 270 656.7 641 495.7 442.4 421.8
Eval SD 0 524.5 1332 1355 829.4 617 878.6
Free AVG 0 119.4 899.7 624 611.1 1214 578.1
Runs > 5000 0 1 5 4 7 6 23
Scaled Eval AVG 1 1.776 4.32 4.217 3.261 2.911 2.775
Scaled Eval SD 0 3.451 8.765 8.915 5.457 4.059 5.781
Borda Count 60 53.5 46.5 42.5 40.5 45 288

DUET-RS

Eval AVG 1535 844.8 1431 552.9 479.9 1148 1041
Eval SD 841.3 891.5 1430 660.1 502 1582 1075
Free AVG 0 635.7 3177 1744 5760 2571 2315
Runs > 5000 1 5 9 7 10 9 41
Scaled Eval AVG 10.1 5.558 9.416 3.638 3.157 7.553 6.846
Scaled Eval SD 5.535 5.865 9.411 4.343 3.303 10.41 7.072
Borda Count 20 31 33 40.5 37.5 37 199

DUET-SE

Eval AVG 152 251 484.9 279.6 382.7 414.8 314.2
Eval SD 0 493.3 937.7 455.4 600.9 650 566.8
Free AVG 0 121.1 902.4 482.1 971.3 1298 629.2
Runs > 5000 0 1 5 3 3 7 19
Scaled Eval AVG 1 1.651 3.19 1.839 2.518 2.729 2.067
Scaled Eval SD 0 3.245 6.169 2.996 3.953 4.276 3.729
Borda Count 60 74 65.5 70.5 67.5 59 396.5
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Figure 4.2. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
Shekel 5 dataset.
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Table 4.3. Performance on the Shekel 7 function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 142
Borda Count 60 49 51.5 56 59 56 331.5

DUET-naive

Eval AVG 142 141.8 141.7 185.7 369.1 503.6 237.9
Eval SD 0 0.8944 1.237 119.1 574 836.4 409.8
Free AVG 0 64 128 231 952.5 1139 419.1
Runs > 5000 0 0 2 0 4 3 9
Scaled Eval AVG 1 0.9986 0.9977 1.308 2.599 3.547 1.675
Scaled Eval SD 0 0.006299 0.008709 0.8387 4.042 5.89 2.886
Borda Count 60 51 50 48 45.5 40.5 295

DUET-RS

Eval AVG 1340 1138 1284 748.5 1359 1149 1193
Eval SD 1171 1324 1320 669 1357 1644 1286
Free AVG 0 578.2 1003 1342 4576 3875 1895
Runs > 5000 8 11 9 10 3 5 46
Scaled Eval AVG 9.439 8.011 9.045 5.271 9.573 8.092 8.401
Scaled Eval SD 8.249 9.327 9.295 4.711 9.56 11.57 9.057
Borda Count 20 20 21.5 20 31 38 150.5

DUET-SE

Eval AVG 142 127.4 140.3 226.3 283.6 198.1 182.9
Eval SD 0 3.218 88.85 421.3 460.8 303.3 276.8
Free AVG 0 64 138.5 273.6 1028 872.9 396.1
Runs > 5000 0 0 1 0 4 3 8
Scaled Eval AVG 1 0.8972 0.9881 1.594 1.997 1.395 1.288
Scaled Eval SD 0 0.02266 0.6257 2.967 3.245 2.136 1.949
Borda Count 60 80 77 76 64.5 65.5 423
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Figure 4.3. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
Shekel 7 dataset.
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Table 4.4. Performance on the Shekel 10 function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 142
Borda Count 60 53 55.5 61.5 62 66.5 358.5

DUET-naive

Eval AVG 142 142 142.2 501.3 261.9 1133 365.9
Eval SD 0 0.686 0.6831 791.4 355.5 1398 716.1
Free AVG 0 64 128 550.4 624 2677 674
Runs > 5000 0 2 4 5 6 5 22
Scaled Eval AVG 1 1 1.002 3.531 1.844 7.982 2.577
Scaled Eval SD 0 0.004831 0.004811 5.573 2.503 9.845 5.043
Borda Count 60 48 45 39 38 33.5 263.5

DUET-RS

Eval AVG 857.6 1298 1116 1017 868.3 603.4 947.3
Eval SD 652.9 733.6 1375 692.3 505.7 383.4 779.9
Free AVG 0 696.6 1124 3234 5874 5468 2733
Runs > 5000 5 7 7 4 7 4 34
Scaled Eval AVG 6.039 9.143 7.858 7.164 6.115 4.249 6.671
Scaled Eval SD 4.598 5.166 9.681 4.875 3.562 2.7 5.493
Borda Count 20 24 25 39 31 43 182

DUET-SE

Eval AVG 142 127.6 142.6 601.9 356.3 801.8 343.2
Eval SD 0 2.615 76.85 983.4 599.8 1266 697.8
Free AVG 0 64 144 1549 944 3362 1011
Runs > 5000 0 2 1 4 2 4 13
Scaled Eval AVG 1 0.8987 1.004 4.239 2.509 5.647 2.417
Scaled Eval SD 0 0.01842 0.5412 6.925 4.224 8.913 4.914
Borda Count 60 75 74.5 60.5 69 57 396
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Figure 4.4. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
Shekel 10 dataset.
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Table 4.5. Performance on the Hartman 3 function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 179
Borda Count 59 43 56.5 51 57 57 323.5

DUET-naive

Eval AVG 179 176.2 198.9 210.6 267.4 290.2 220.4
Eval SD 0 2.546 98.43 110 175.2 195.5 128
Free AVG 0 45 95.1 148.9 333.9 582 200.8
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 0.9844 1.111 1.177 1.494 1.621 1.231
Scaled Eval SD 0 0.01423 0.5499 0.6145 0.9786 1.092 0.715
Borda Count 59 55 59.5 56 45.5 41 316

DUET-RS

Eval AVG 498.9 366.2 363.2 435.5 327.8 290.4 380.3
Eval SD 185.6 152.2 120.9 169.8 163.6 126.4 166.6
Free AVG 0 64.5 136.2 231.3 413.1 667.5 252.1
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 2.787 2.046 2.029 2.433 1.831 1.622 2.125
Scaled Eval SD 1.037 0.8505 0.6754 0.9486 0.9137 0.7064 0.9305
Borda Count 23 29 35 30 41.5 44.5 203

DUET-SE

Eval AVG 179 191.8 327.7 240.2 279.9 247.8 244.4
Eval SD 0 86.81 167.3 141.1 161.9 136.2 136.2
Free AVG 0 48.9 138.3 174.6 404.1 658.5 237.4
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 1.071 1.831 1.342 1.564 1.384 1.365
Scaled Eval SD 0 0.485 0.9344 0.7885 0.9044 0.7609 0.7612
Borda Count 59 73 49 63 56 57.5 357.5
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Figure 4.5. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
Hartman 3 dataset.
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Table 4.6. Performance on the Hartman 6 function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 528
Borda Count 60 70 75 75 78 77 435

DUET-naive

Eval AVG 528 2804 3217 2596 3038 2172 2376
Eval SD 0 1530 1340 1615 1349 1139 1548
Iter AVG NaN 87.15 98.7 81.21 89.12 67.37 0
Free AVG 0 522.9 1184 1462 3208 4042 1737
Runs > 5000 0 0 0 1 3 1 5
Scaled Eval AVG 1 5.31 6.094 4.917 5.753 4.113 4.5
Scaled Eval SD 0 2.897 2.538 3.059 2.555 2.156 2.932
Borda Count 60 45 39 33.5 36 36 249.5

DUET-RS

Eval AVG 2969 3547 2780 2195 3190 2312 2846
Eval SD 853.5 841.3 1401 1360 1081 1243 1198
Iter AVG NaN 93.11 77.27 68.36 98.23 79.62 0
Free AVG 0 558.7 927.3 1231 3536 4778 1838
Runs > 5000 9 11 9 9 7 12 57
Scaled Eval AVG 5.624 6.718 5.265 4.158 6.043 4.379 5.39
Scaled Eval SD 1.616 1.593 2.653 2.576 2.047 2.355 2.27
Borda Count 20 24.5 33 33.5 34 30 175

DUET-SE

Eval AVG 528 2289 3024 2464 2873 1898 2169
Eval SD 0 1568 1323 1530 1273 1108 1482
Iter AVG NaN 75.89 96.6 83.35 92.28 67.79 0
Free AVG 0 455.4 1159 1500 3322 4067 1751
Runs > 5000 0 1 0 0 2 1 4
Scaled Eval AVG 1 4.335 5.728 4.666 5.442 3.594 4.108
Scaled Eval SD 0 2.969 2.505 2.898 2.412 2.098 2.806
Borda Count 60 60.5 53 58 52 57 340.5
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Figure 4.6. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
Hartman 6 dataset.
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Table 4.7. Performance on the GP function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 166
Borda Count 41 27 22.5 21 20 20 151.5

DUET-naive

Eval AVG 166 158.1 151.5 151.1 144 140.1 151.8
Eval SD 0 9.894 8.205 10.29 10.58 14.03 12.9
Free AVG 0 29.7 57.6 87.6 168 274 102.8
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 0.9524 0.9127 0.9102 0.8675 0.844 0.9145
Scaled Eval SD 0 0.0596 0.04943 0.06199 0.06375 0.08452 0.07773
Borda Count 41 36 38.5 41 41 41 238.5

DUET-RS

Eval AVG 123.9 109.5 100.7 92.15 71.35 59.6 92.87
Eval SD 22.32 22.97 20.71 19.43 23.15 13.69 29.84
Free AVG 0 24.7 47.2 72.9 137.4 231 85.53
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 0.7464 0.6599 0.6063 0.5551 0.4298 0.359 0.5594
Scaled Eval SD 0.1345 0.1384 0.1247 0.117 0.1394 0.08249 0.1798
Borda Count 77 79 79 77 77 80 469

DUET-SE

Eval AVG 166 149.2 133.3 128 104 92.65 128.9
Eval SD 0 13.74 10.49 14.8 11.95 16.8 27.93
Free AVG 0 30.3 58 87.9 174 288 106.4
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 0.8991 0.803 0.7711 0.6262 0.5581 0.7763
Scaled Eval SD 0 0.08276 0.06318 0.08916 0.07198 0.1012 0.1683
Borda Count 41 58 60 61 62 59 341
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Figure 4.7. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
GP dataset.
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Table 4.8. Performance on the Camel function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 246
Borda Count 44 28 21 20 20 20 153

DUET-naive

Eval AVG 246 181 162.9 148.8 141.8 132.5 168.8
Eval SD 0 64.95 45.33 36.88 40.81 27.11 55.18
Free AVG 0 28.6 59.4 89.7 173.4 300 108.5
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 0.7358 0.6622 0.6049 0.5766 0.5386 0.6863
Scaled Eval SD 0 0.264 0.1843 0.1499 0.1659 0.1102 0.2243
Borda Count 44 45.5 49 50 44.5 40 273

DUET-RS

Eval AVG 227.2 156.1 142.3 129.9 93.5 74.65 137.3
Eval SD 21.4 36.56 47.4 44.43 31.56 24.23 60.21
Free AVG 0 28.9 59.6 91.8 178.2 281 106.6
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 0.9234 0.6346 0.5787 0.5283 0.3801 0.3035 0.5581
Scaled Eval SD 0.087 0.1486 0.1927 0.1806 0.1283 0.09851 0.2447
Borda Count 68 58.5 64 62 67.5 69 389

DUET-SE

Eval AVG 246 160.8 138.2 122.3 98.1 75.95 140.2
Eval SD 0 62.83 36.08 33.37 32.63 25.81 65.5
Free AVG 0 29.2 61.6 92.7 183 309 112.6
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 0.6535 0.562 0.4972 0.3988 0.3087 0.57
Scaled Eval SD 0 0.2554 0.1467 0.1356 0.1327 0.1049 0.2663
Borda Count 44 68 66 68 68 71 385

0 n 2n 3n 6n 10n
0

50

100

150

200

250

E
va

lu
at

io
ns

Camel (2 variables)

Free points per iteration

 

 

DUET−naive

DUET−RS

DUET−SE

DIRECT

0 n 2n 3n 6n 10n
0

5

10

15

20

N
um

 o
f F

ai
lu

re
s

Free points per iteration

Figure 4.8. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
Camel dataset.
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Table 4.9. Performance on the Shubert function.

Random Pt Num. 0n 1n 2n 3n 6n 10n Total

DIRECT Evals 2957
Borda Count 50 21 20 20 20 20 151

DUET-naive

Eval AVG 2957 769.1 543.2 332.8 208.7 172.8 830.6
Eval SD 0 764.8 420.6 188.5 102.2 92.13 1041
Free AVG 0 154 242.8 273 411.6 606 281.2
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1 0.2601 0.1837 0.1125 0.07058 0.05844 0.2809
Scaled Eval SD 0 0.2586 0.1422 0.06375 0.03456 0.03116 0.3521
Borda Count 50 56 48 52 47 44 297

DUET-RS

Eval AVG 2749 871.4 345.7 355.6 155.7 104.5 763.6
Eval SD 144.5 772.5 267.9 279.5 108.1 63.95 990.8
Free AVG 0 238.5 226 486.9 651 758 393.4
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 0.9295 0.2947 0.1169 0.1203 0.05264 0.03532 0.2582
Scaled Eval SD 0.04886 0.2612 0.09062 0.09451 0.03655 0.02163 0.3351
Borda Count 77 58.5 69 61 66 68 399.5

DUET-SE

Eval AVG 2959 781.6 374.3 296.4 153.6 98.15 777.1
Eval SD 0.6156 724.7 239.1 215 93.99 61.77 1054
Free AVG 0 191.2 266.8 363.3 586.8 723 355.2
Runs > 5000 0 0 0 0 0 0 0
Scaled Eval AVG 1.001 0.2643 0.1266 0.1002 0.05193 0.03319 0.2628
Scaled Eval SD 0.0002082 0.2451 0.08087 0.0727 0.03178 0.02089 0.3565
Borda Count 23 64.5 63 67 67 68 352.5
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Figure 4.9. A plot showing the average number of evaluations and total number of failures
with respect to the number of (randomly generated) points added at each iteration for the
Shubert dataset.
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Table 4.10. A summary of the empirical results, comparing the variants of DUET and
the DIRECT algorithm. The average number of function evaluations is normalized so that
the number of evaluations required by DIRECT is one.

Relative Avg Evals Num of Failures Borda Count
(Std Dev)

DIRECT 1.00 (0) 0 2458.5
DUET-naive 1.69 (3.01) 59 2480.5
DUET-RS 2.88 (4.79) 178 2501.5
DUET-SE 1.49 (2.54) 44 3359.5

33



This page intentionally left blank.

34



5 Conclusion

We have compared our three variants of DUET which extend the DIRECT algorithm to
use external trial points. DUET-SE maintains the ordering of splits while making use of
free function evaluations of external trial points. We have found that, overall, DUET-SE
outperforms the two other variants: DUET-naive and DUET-RS. DUET-SE outperforms
DUET-naive because it directly saves on function evaluations of subpoints when external
points are available can be used as subpoint estimates. DUET-RS does not perform very
well, indicating that the order of splits significantly contributes to the efficiency of the
DIRECT algorithm.

When optimizing in parallel and using external points that are generated by other opti-
mization algorithms, we hope that the performance of the DUET variants should improve
as compared with using randomly generated points. When using external trial points that
are generated by local optimization algorithms then this may introduce a local bias in DI-
RECT which may require fine tuning of the algorithm (e.g., adjustment of ε parameter).
This remains a topic for future investigation.

There are several related topics for future research. The possibility of sampling hyper-
rectangles at points different than the center point opens up the possibility of sampling at
points that may help to speed converge to solutions that lie on the boundary. In practice,
solutions often lie on a constraint boundary. We can potentially enlarge to initial partition
to be larger then the feasible region; then, when the center point is infeasible we evaluate the
closest feasible point to the center. Another topic for future research would be to investigate
whether the theoretical justification for Lipschitz continuous functions can be preserved by
sampling only at center points but using additional points to strengthen the bounds for Lip-
schitz continuous functions. Since the convex hull computation (implicitly) implies a lower
and upper bound on the Lipschitz constant for each hyperrectangle on the lower convex hull,
these bounds may be used to further compute bounds on the objective function.
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