
SANDIA REPORT 
SAND2007-6422 
Printed October 2007 
 
 
 

Resolving the Sign Ambiguity in the 
Singular Value Decomposition 
 
 
R. Bro, E. Acar, T. Kolda 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 and Livermore, California 94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
 
 
 
 
 



 
Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation. 
 
NOTICE: This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government, nor any agency thereof, nor 
any of their employees, nor any of their contractors, subcontractors, or their employees, make 
any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors. The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors. 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov
Online ordering:  http://www.doe.gov/bridge  
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 
 
 

 
 

 

2 

mailto:reports@adonis.osti.gov
http://www.doe.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online


 

SAND2007-6422 
Printed October 2007 

 
 

Resolving the Sign Ambiguity in the Singular 
Value Decomposition 

 
 

Rasmus Bro  
Dept. Food Science, Faculty of Life Sciences 

University of Copenhagen 
DK-1958 Frederiksberg C 

rb@life.ku.d
 

Evrim Acar 
Computer Science Department 
Rensselaer Polytechnic Institute 

Troy, New York USA 
   

Tamara Kolda 
Sandia National Laboratories 

Livermore, California 94551-0969 
 

Abstract 

Many modern data analysis methods involve computing a matrix singular 
value decomposition (SVD) or eigenvalue decomposition (EVD). Principal 
components analysis is the time-honored example, but more recent 
applications include latent semantic indexing, hypertext induced topic 
selection (HITS), clustering, classification, etc. Though the SVD and EVD 
are well-established and can be computed via state-of-the-art algorithms, it 
is not commonly mentioned that there is an intrinsic sign indeterminacy 
that can significantly impact the conclusions and interpretations drawn 
from their results. Here we provide a solution to the sign ambiguity 
problem and show how it leads to more sensible solutions. 
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INTRODUCTION  

The singular value decomposition (SVD) is of fundamental importance in a huge number of applications 
in various fields of data analysis including principal components analysis (PCA) [Jackson 1980, Jackson 
1981],  latent semantic indexing (LSI) [Dumais et al. 1988], hypertext induced topic selection (HITS) 
[Kleinberg 1999], clustering, classification, etc.. For a real-valued matrix, X ∈ RIxJ the singular value 
decomposition theorem states that there exists orthogonal matrices  
 

U = { u1, u2,…,uI}  ∈ RIxI and V = { v1, v2,…,vJ}∈ RJxJ  
 

Such that 
Equation 1.  

 
X = UΣVT

where Σ = diag(σ1, σ2,…, σP) with P = min{ I,J}  and σ1 ≥  σ2  ≥  L ≥  σP ≥  0. The diagonal entries of 
Σ are the singular values while the columns of U and V are, respectively, the left and right singular 
vectors. If these singular values are distinct, the decomposition is said to be unique [Kahaner et al. 1989, 
Schott 1997]. In many data analysis situations, it is most practical to work with the truncated form of the 
SVD where only the first K P<  singular values and vectors are used so that 

X ≈  UKΣKVK
T = 

1

K

k =
∑ σkukvk

T

where 

UK = {u1, u2,…,uK}∈ RIxK, VK = { v1, v2,…,vK}∈ RJxK , and ΣK = diag(σ1, σ2,…, σK) 

This is no longer an exact decomposition of the matrix X, but it is the best rank-K approximation in a 
least squares sense and is still unique if the singular values are distinct. 

However, the decomposition is only unique up to a reflection of each set of singular vectors, because for 
any set of singular vectors, k, it holds that 

Equation 2.  
 

σkukvk
T = σk(-uk)(-vk)T. 

 

Thus, the SVD itself provides no means for assessing the sign of each singular vector. In actual 
algorithmic implementations of SVD, this indeterminacy is inherited so that the individual singular 
vectors have an ‘arbitrary’ sign. The actual sign is determined as a by-product of the computations that 
are used to ensure numerical stability. This determination of sign is essentially the same as assigning the 
sign randomly and hence the sign has no meaningful interpretation in terms of the data that the 
decomposition represents.  
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Even though it makes no difference mathematically, the current arbitrariness in the sign convention has 
important and significant ramifications in a number of applications.  

• For example, statistical evaluation of uncertainty through bootstrapping where many models are 
calculated on slightly altered data. Comparison across these different models can be problematic 
when the sign can switch. 

• Another example is cross-validation. One of the methods for cross-validation is the classical 
Eastment & Krzanowski [1982] approach in which two PCA models are calculated on slightly 
different data and then combined. Even in the original approach, the sign indeterminacy was 
realized to be a problem, but only an ad hoc solution (the so called parity check) is used to 
circumvent the problem. 

• In exploratory analysis through principal component analysis, the signs of the scores and loadings 
(corresponding to scaled singular vectors) often flip, e.g., upon removal of outliers. While this is 
trivial mathematically, it has consequences for less-experienced data analysts that are not aware 
of the arbitrariness of the sign of the solution. 

Common to the above examples is the lack of a fundamental technique for determining the sign. 
Therefore ad hoc approaches are used such as setting the maximum element in a singular vector to be 
positive. Unfortunately, such approaches do not solve the problem from a data analytical or 
interpretational point of view. 

Consider the following simple example: 

 
4 22 3 5
1 5 1 1
11 69 10 14
11 69 10 14

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

X  

 
MATLAB has two standard methods for computing the SVD. The ‘svd’ method uses the LAPACK 
DGESVD command which is based on the QR method (see [Anderson et al. 1999]). The ‘svds’ 
command, on the other hand, uses ARPACK which is based on using Lanczos iterations (see [Lehoucq et 
al. 1998]). These are simply two different methods but should ideally always produce the same results. 
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Using ‘svd’ to calculate the SVD of X, we get the following left singular vectors 

 
-.22 .97 .07 .00
.05 .06 1.00 .00
.69 .16 .03 .71
.69 .16 .03 .71

−⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

U . 

 
However, ‘svds’ flips the signs of the 1st three pairs of the singular vectors. Below the left singular vectors 
are shown (the right singular vectors have a corresponding sign switch). 

 
.22 .97 .07 .00
.05 .06 1.00 .00
.69 .16 .03 .71
.69 .16 .03 .71

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥− −⎣ ⎦

U . 

 

Moreover, because the ‘svds’ Lanczos-based algorithm has a random component, the results may differ 
on repeated calculations for the exact same matrix.  

Obviously, this ambiguity can pose problems especially for an unaware user. As a practical example 
consider the following simple dataset published in Time Magazine, January 1996 showing average 
consumption of liquor, wine and beer (L/yr) as well as life expectancy in years and heart disease rate per 
100.000/yr (Table 1). 
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Table 1. Data from Time Magazine. 

 Liquor L/year Wine L/year Beer L/yr Life Exp year HeartD 100.000/yr 

France             2.5    63.5    40.1    78 61.1 

Italy              0.9    58.0    25.1    78 94.1 

Switzerland     1.7    46.0    65.0    78 106.4 

Australia          1.2    15.7   102.1    78 173.0 

Great Britain   1.5    12.2   100.0    77 199.7 

United States   2.0     8.9    87.8    76 176.0 

Russia             3.8     2.7    17.1    69 373.6 

Czech Rep 1.0     1.7   140.0    73 283.7 

Japan              2.1     1.0    55.0    79 34.7 

Mexico             0.8     0.2    50.4    73 36.4 

 

When performing an SVD on these clearly positive data, the first right singular vector is 

 
.008
.068
.321
.320
.889

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

u . 

 

As can be seen the singular vector is all-negative even though the data points are clearly pointing in the 
opposite direction. In fact, the current LAPACK-based implementation of SVD in MATLAB is such that 
the first singular vectors from an all-positive matrix will always have all-negative elements! 

In the following, a convention will be developed that leads to a completely identified solution for SVD 
and a solution which is also meaningful in terms of the data being decomposed. 
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METHODOLOGY 
Mathematically, there is no way to avoid the sign ambiguity of a multiplicative term such as the pair of 
singular vectors. Hence mathematics cannot guide the choice of the sign. However, data analysis is more 
than algebra. In order to identify the sign of a singular vector, it is suggested that it be similar to the sign 
of the majority of vectors it is representing. Geometrically, it should point in the same, not the opposite, 
direction as the points it is representing. In Figure 1 some examples are given of two-dimensional data 
and the corresponding first right singular vector as well as the sign-corrected vector. 
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Figure 1. Four examples of random 10 2×  matrices. The elements are drawn from a uniform 
distribution with a positive bias to make the direction obvious. Each row is shown as a 
thin line and the first right singular vector is shown in dashed thick. The sign-corrected 
right singular vector is shown as a thick solid line. 

 

Another example is given in Figure 2 showing a 201-dimensional dataset of fluorescence spectra. The 
spectra are seen to have a common positive shape while the first singular vector has the opposite 
direction. A sign-corrected singular vector will point in the positive direction and hence reflect the 
common direction of the individual data points. 
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Figure 2. Example of a data matrix. Each thin line represents one row in a 61  matrix and the 
thick line the associated first right singular vector. In this case, the singular vector is said 
to have the wrong sign because it points in the opposite direction of the vectors it 
represents. 

201×

The sign suggested here can be determined from the sign of the inner product of the singular vector and 
the individual data vectors. The data vectors may have different orientation but it then makes intuitive as 
well as practical sense to choose the direction in which the majority of the vectors point. This can be 
found by assessing the sign of the sum of the signed inner products. Suppose, for instance, that we wish to 
determine the sign for the kth left singular vector, uk. Ideally, we will have 

(uk)T(xj) > 0 for j = 1,…,J 

if the singular vector is aligned correctly sign-wise with the column vectors, xj, of the data matrix 
  I J×∈X � . Specifically, we choose the sign to maximize 

s = 
1

J

j=
∑  sign(uk

Txj) (uk
Txj)2

where xj is the jth column of the matrix X. The sign of the corresponding right singular vector is 
determined similarly using the rows of the matrix X (or, think of it as the columns of XT). If the two 
optimal signs of the left and right singular vectors disagree when assessed this way, the overall sign can 
be determined by choosing the sign based on which of the left and right singular vector has the highest 
absolute summed value. This will help overcome ambiguity caused by one mode having close to arbitrary 
sign (e.g., because of centered data). 
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SignFlip Function 
 
Input:     I J×∈X �  and its possibly truncated singular value decomposition (U, V, S) 
 
Output: U’ and V’ (left and right singular vectors with appropriate signs) 
 
     (Step 1) for each left singular vector, k=1, 2…K and for yj being the jth column of Y  

                         
1, 

K
T

m m m
m m k

σ
= ≠

= − ∑Y X u v

                         Let sk
left = sign(u

1

J

j=
∑ k

Tyj) (uk
Tyj)2 

     endfor 
         
      (Step 2) for each right singular vector, k=1, 2…K and  
                    for yi being the ith transposed row of Y 

                          
1, 

K
T

m m m
m m k

σ
= ≠

= − ∑Y X u v

                         

                         Let sk
right =  sign(v

1

I

i=
∑ k

Tyi)(vk
Tyi)2 

     endfor 
 

         (Step 3) for each singular vector, k=1, 2…K 
                         if (sk

left)(sk
right) < 0 then  

                             if  sk
left < sk

right then  
                                 sk

left
 = -sk

left 

                                             else 
                                 sk

right
 = -sk

right 

                             endif 
                         endif  
                         u’k = sign(sk

left)uk 
                         v’k = sign(sk

right)vk
     endfor        

 
Figure 3. Algorithm for determining the signs of singular vectors. 

The detailed algorithm is given in Figure 3 which also includes a subtraction of additional components 
before determining the sign of a given component. This is not necessary in standard SVD but it is useful 
if the components are correlated which can be the case in alternative bilinear models such as multivariate 
curve resolution or partial least squares regression. The algorithm can be expected to work when the 
magnitude of the inner products are not close to zero. When the magnitudes come close to zero, then the 
sign will become arbitrary, essentially because the vectors point equally much in all directions. This is 
partially remedied in the algorithm by considering the combined magnitude of both the left and the right 
singular vectors, but of course, in the extreme, the sign will be arbitrary. 
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EXAMPLES 
Several examples on the use of the sign convention are provided in the following to illustrate its 
usefulness. 

The Effect of Sign Ambiguity on Eigenfaces 
An example for the illustration of sign ambiguity in the SVD is a well-known technique called Eigenfaces 
[Turk & Pentland 1991], often used in face recognition. The underlying idea behind Eigenfaces is to 
represent a set of face images arranged as a matrix using the significant eigenvectors of the pixelwise 
covariance matrix of the image dataset. Let I J×∈X �  represent an image dataset, where J is the number 
of images and I is the number of pixels per image. We can reduce the dimensionality of the data and 
represent the image dataset by using the significant eigenvectors of XXT; in other words, the significant 
left singular vectors of the original matrix X. Consequently, also in the applications of Eigenfaces, 
singular vectors may flip sign due to the intrinsic sign ambiguity of SVD.  

In order to illustrate the effect of sign flip on Eigenfaces, we compute the Eigenfaces of an image dataset 
containing 265 images of 10 subjects in different poses from the UMIST Face Database (currently The 
Sheffield Face Database) [Graham & Allinson 1998]. Figure 4 shows the Eigenfaces corresponding to the 
first three left singular vectors of the image dataset obtained from two different runs of the ‘svd’ method 
in MATLAB when 200 images out of 265 images are randomly selected at each run. We observe that as a 
result of the sign ambiguity in SVD, we obtain the photographic negative for the second and occasionally 
the third eigenface on different runs. On the other hand, when our sign flip approach is used, we 
consistently obtain the Eigenfaces given in Figure 5 which are seen to be positive rather than 
photographic negative. 
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Figure 4.  Eigenfaces corresponding to the first three left singular vectors obtained at different runs 

of the ‘svd’ method in MATLAB when 200 out of 265 images are randomly sampled at 
each run. 
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Figure 5. Eigenfaces corresponding to the first three left singular vectors obtained consistently at 

different runs with SignFlip function when 200 out of 265 images are randomly sampled 
at each run. 

 
The Effect of Sign Ambiguity on Spectral Data 
A set of fluorescence emission spectra each of dimension 201 is given for 61 different excitation 
wavelengths and held in 61  matrix Figure 6. These spectra represent three underlying spectral 
components and hence the three largest singular components should represent the systematic variation in 
the data which is indeed found to be the case.  

201×
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Figure 6. Sixty-one 201-dimensional fluorescence emission spectra. 

In an experiment, these three components are bootstrapped 100 times in order to be able to evaluate the 
uncertainty of the estimated components. The bootstrapping is done by sampling 61 rows with 
replacement 100 times, and the results are shown in the upper half of Figure 7. 

While the sign-flipping may be due to the bootstrapping it is also likely to be due to the semi-random 
nature of the sign of the singular vectors. In the lower half of Figure 7, the result of applying the proposed 
sign convention is shown and as can been seen, all singular vectors can now be immediately compared 
because their signs do not change as long as they represent similar aspects of the data. 
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Figure 7. Bootstrapped three first right singular vectors from Figure 6 before (top) and after 

(bottom) sign correction. 

 
Conclusion 
A rule has been developed for applying meaningful signs to singular vectors. This rule makes it possible, 
for the first time to obtain unique parameters from the SVD that are meaningful from a data 
representation and interpretation point of view. This has implications for all situations where SVD is used 
as the computational engine for data analysis. 
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