
High Performance Algorithms and Software for Nonlinear Optimization pp. 316-335
G. Di Pillo and A. Murli, Editors
c©2003 Kluwer Academic Publishers B.V.

Understanding Asynchronous Parallel Pattern
Search1

Tamara G. Kolda2 (tgkolda@sandia.gov)
Computational Sciences and Mathematics Research Department, Sandia National
Laboratories, Livermore, CA 94551–9217

Virginia J. Torczon3 (va@cs.wm.edu)
Department of Computer Science, College of William & Mary, P. O. Box 8795,
Williamsburg, VA 23187–8795

Abstract

2 An illustrative example
To illustrate the behavior of APPS we use the problem

min
x ∈R2

f(x1, x2) = (x1 − 3)2 + (x2 − 2)2 + (x1 + x2 − 4)2, (2)

+

then we say that k ∈ S where S denotes the set of

We revisit our example from the previous section and assume that the amount
of time required for each function evaluation varies. Obviously, for (2) this is a
contrivance we introduce for the sake of illustration; nonetheless, we use it to show
what we have seen can happen in practice [3].

In Figure 2 we illustrate which time steps on each process are spent computing a
function value and which are spent waiting for all the other processes to finish their
function evaluations. The solid vertical bars running across all processes indicate
the synchronization barrier inherent in PPS and signal both the end of the previous
iteration and the the start of the next iteration. The solid horizontal bars represent
time steps spent computing a function value; the small vertical bars represent the end
of a function evaluation (recall that the previous iteration ends with the initiation of
a function evaluation). The dots represent idle time.

t = 0 1 2 3 4 5 6 7 8

process 1

process 2

process 3

process 4

f(xk) = 25.0 13.0 5.0 1.0

k =0 1 2 3

Figure 2: An illustration showing which time steps on each process in our example
for PPS might be spent computing a function value versus sitting in an idle state.

Our illustration indicates that each function evaluation takes between 1 and 3
times steps. On average, each process is idle for roughly 3 of the 8 time steps in our
illustration (i.e., about 40% of the time steps). If we could somehow use the idle time
steps for computation, for this example we could potentially compute as many as
13 additional function evaluations (one per idle time step) through time step

• evaluate f(xbest
i + ∆best

i di);

• if f(xbest
i + ∆best

i di) < f(x best
i), then broadcast (non-blocking) the result to all

other processes;

• update local values xbest
i and ∆best

i based on current local information and any
messages that may have arrived from other processes;

• repeat.

By design, APPS removes the synchronization barrier in PPS, which is what
introduces the idle time seen in Figure 2. The price we pay—both to the specification
and to the analysis of APPS—is that each process has its own notion of the best
known point seen so far, as well as its own value for ∆. Any success on one process
is communicated to all other processes participating in the search, but the successful

We also define the set Ci ⊆ Ui , where Ci is the set of time steps that are contractions
on process i. We define contractions to be those time steps at which ∆t

i is reduced.
Finally, the set Ui \Ci is the subset of time steps at which no interesting events occur,
i.e., xt

i = xt−1
i , and ∆t

i = ∆t−1
i .

We then define Ti as the subset of time steps at which an interesting event occurs
on process i (i.e., either xt

i and/or ∆t
i is/are changed) so that Ti = Si ∪ Ci .

4.1.2 Identifying the source of a change

For the purposes of the analysis, we need a way to identify the source of a change for
any given update. To this end, we introduce the following three generating functions:

ωi (t) = the generating process index for the update at time step t on process i,

νi (t) =
the time index for the completion of the function evaluation that
produced the update at time step t on process i, and

τ i (t) =
the time index for the initiation of the function evaluation that
produced the update at time step t on process i.

Here ωi (·) : Si → P , νi (·) : Si → T , τ i (·) : Si → T , and 0 ≤ τ i (t) < ν i (t) ≤ t.

4.1.3 Defining xt
i and ∆t

i

The generating functions allow us to give the following general definitions for xt
i and

∆t
i . For every t ∈ T , t > 0, the best point xt

i for process i ∈ P is defined to be:

xt
i =

{
x

τ i(t)
ω i(t)

+ ∆
τ i(t)
ω i(t)

dω i(t), if t ∈ S i , and

xt−1
i , otherwise.

(3)

We initialize the procedure with x0
i = x0, for all i ∈ P .

For every t ∈ T , t >

t 0 1 2 3 4 5 6 7 8

finish f (trial1) – – 35.0 – 21.0 33.0 – 9.0 3.0
f (·) from 2 – – – – – – – – –
f (·) from 3 – – – – 17.0 – 19.0 – –

f (·) from 4 – – 13.0 5.0 1.0 – – – –

ω 1(t) – – 4 4 4 – – – –
τ 1(t) – – 0 1 2 – – – –
ν1(t) – – 1 2 3 – – – –
λt

1 – – – – – – – – –
x t

1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
5.0 5.0 4.0 3.0 1.0 1.0 1.0 1.0 1.0

f (x t
1) 25.0 25.0 13.0 5.0 1.0 1.0 1.0 1.0 1.0

∆t
1 1.0 1.0 1.0 2.0 4.0 2.0 2.0 1.0 0.5

trial1 = 4.0 – 4.0 – 7.0 5.0 – 4.0 3.5
x t

1 + ∆t
1 d 1 5.0 – 4.0 – 1.0 1.0 – 1.0 1.5

finish f (trial2) – 41.0 – – 32.5 25.0 5.0 1.0 0.5
f (·) from 1 – – – – – – – – –

f (·) from 3 – – 17.0 19.0 – – – – –

f (·) from 4 – – – 1.0 13.0 5.0 – – –

ω 2(t) – – 3 4 – – – – –
ω 2(t) – – 1 4 – – – –

–
ω 2(t) – 1 1 – – – – – 1.0ω 2(t) – – – – – – – – 1.0

ω∆t
1 3.0 3.02.0 1

1.0 1.0 1.0 1.0 – 1.019.0 – 1
1.0 1.01.0 1.01.0–0.5 trial1 = 19.0

–
trial11.0 1.01.0 1.00.5

trial10.50.5

0.5

trial1 =
–– – –

f
––

• Table 1 provides a complete accounting of all events across all four processes
up through time step t = 8. At every time step, we specify xt

i , f(xt
i), and

∆t
i . Where appropriate, we also specify the values for the generating functions,

expansion parameter, trial point, and trial and incoming function values. We
do not indicate the contraction parameter since we always choose θt

i

-3 -2 -1 0 1 2 3 4 5 6 7
-3

(a) t = 1

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(b) t = 2

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(c) t = 3

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(d) t = 4

Figure 4: Asynchronous parallel pattern search applied to (2)

To give a sense of how to interpret these various representations, we highlight a
few situations.

4.2.1 An internal success

At time step t = 0, process 4 starts a function evaluation at the trial point x0
4+∆0

4d4 =
(3.0, 5.0)T + (1.0) · (0, −1)T = (3.0, 4.0)T . The function evaluation at this trial point
finishes at time step t = 1 with a function value of 13.0. This is an internal success,

326

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(a) t = 5

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(b) t = 6

−3 −2 −1

(c) t = 7

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

1

(d) t = 8

Figure 5: Asynchronous parallel pattern search applied to (2)

i.e., time step t = 1 ∈ I4. Since the generating functions map from the set of
successful time steps, in Table 1 we show their values whenever a time step is a
success. In this case, ω4(1) = 4, τ4(1) = 0, and ν4(1) = 1. Since the time step is
an internal success, we also specify the expansion parameter. In this case, λ1

4 = 1.

the new trial point x1
4

at time step t = 3. We can also see this in Figure 4, where process 2 continues its
evaluation of the trial point (3.0, 5.5)T , which it constructed at time step t = 1. A
new function evaluation will not commence on process 2 until the current evaluation
finishes; in this case, at time step t = 4. These actions are fully documented in
Table 1.

4.2.3 A contraction

At time step t = 7 on process 1, the function evaluation that started at time step t = 5
finishes. The function value of 9.0 at the trial point (5.0, 1.0)T does not improve upon
f(x6

1) = 1.0, so this time step is not an internal success. Furthermore, no external
success has occurred since the evaluation of (5.0, 1.0)T was started at time step t = 5.
Therefore, this time step is a contraction on process 1, i.e., time step t = 7 ∈ C1.

We update the step-length control parameter following our definition in (4): ∆7
1 =

θ7
1∆6

1 = 1
2

· (2.0) = 1.0. (As noted earlier, we do not specify θt
i in Table 1 since, for

this example, we always use θt
i = 1

2
.) Observe that we do not need, and thus do not

define, values for the generating functions since the decisions regarding a contraction
are local to the process.

The new trial point is then constructed using this reduced value of the step-
length control parameter: x7

1 + ∆7
1 d1 = (3.0, 1.0)T + (1.0) · (1, 0)T = (4.0, 1.0)T . A

new function evaluation is initiated at this trial point, as seen in Figure 5(c).

4.2.4 Revisiting the partitioning of the time steps

Now that we have some familiarity with the different representations of APPS when

that they have identified a possible solution. This subset of processes must wait until
either a sufficient number of processes agree that a solution has been identified or
some other process produces a new best point. This is a situation we expect to see
only infrequently and then only toward the end of the search. In contrast, in PPS
idle time can occur at each iteration. The results reported in [3] suggest that our
expectation appears to be realized in practice.

6 Tracking iterates across processes
The real challenge to analyzing APPS lies in determining the origin of a given iterate.
Addressing this question precipitated the seemingly complicated notation we have
introduced.

To appreciate the timing effects our analysis must accommodate, we revisit our
example from §4 and consider what happens on process 3 (the third timeline from
the top in Figure 3). If we look at Table 1, it is clear that up through time step t = 8
the subsequence of (distinct) best points on process 3 is:

{
x0

3, x1
3, x2

3, x3
3, x5

3, x8
3

}
=

{(
3.0
5.0

)
,

(
2.0
5.0

)
,

(
1.0
5.0

)
,

(
3.0
4.0

)
,

(
3.0
1.0

)
,

(
3.0
1.5

)}
. (6)

These correspond exactly to the best points at the time steps {0} ∪ {S3 ∩ T̂ } (recall
the partitioning of the time steps given in (5)). But for the purposes of the analysis,
the sequence in (6) is irrelevant. What we really need to know is what sequence of
moves brought the search to the current best point x8

3 = (3.0, 1.5)T . To obtain this
information we need to be able to track what happened on other processes. This is
where the generating functions play a crucial role. Using our generating functions,
we can recover the sequence

{
x0

4, x1
4, x2

4, x3
2 = x3

4, x8
3 = x8

2

}
=

{(
3.0
5.0

)
,

(
3.0
4.0

)
,

(
3.0
3.0

)
,

(
3.0
1.0

)
,

(
3.0
1.5

)}
, (7)

which explains how we actually arrived at x8
3. It is critical to note that the sequence

in (7) could not be recovered simply by looking at the sequence in (6).
In summary, to analyze APPS, we must be able to identify which process produced

the update. Further, the update rules for the iterate, given in (3), mean that if t ∈ S i

we need to be able to identify the time step at which the function evaluation started
so that we can recover both the iterate and the value of the step-length control
parameter used to construct the successful point. In addition, the update rules for
the step-length control parameter, given in (4), mean that if t ∈ S i , we also need to
be able to identify the time step at which the function evaluation finished so that we
can recover the value of λt

i used in the update.
The reason we need this information is that we use it, in part, to verify the

algebraic structure of the iterates. In particular, in [4], we derive a result equivalent
to Theorem 3.2 in [7]. Verifying the algebraic structure of the iterates assures us that

331

we have a step-length control mechanism which prevents premature convergence.
We obtain this assurance even though the APPS processes act as semi-autonomous
agents that can either contract or expand ∆t

i independently, subject to only a mild
modification of the basic rules first outlined in [7].

To see this, we once again return to our example from §4. If we consider x8
3, we see

that our ability to track the sequence of iterates across processes allows us to write
x8

3 as the initial guess, x0, plus a linear combination of the search directions in D, as
follows:

x8
3 = x8

2

= x7
2 + ∆7

2d2

= x3
4 + ∆7

2d2

=
(
x2

4 + ∆2
4d4

)
+ ∆7

2d2

=
(
x1

4 + ∆1
4d4

)
+ ∆2

4d4 + ∆7
2d2

=
(
x0

4 + ∆0
4d4

)
+ ∆1

4d4 + ∆2
4d4 + ∆7

2d2

= x0 +
(
∆7

2

)
d2 +

(
∆0

4 + ∆1
4 + ∆2

4

)
d4

This claim for x8
3 in fact holds for any xt

i produced by APPS, a fact which we
prove in Lemma 4.1 in [4]. More precisely, we say that

xt
i = x0 +

∑

j∈P

δj (i, t) dj with δj (i, t) =
∑

t̂∈Î 3.903 8 1.77f -7955 Tf 4.58 -1.471 Td315 t

Thus we have a rigorous way to obtain conclusions equivalent to

x8
3 = x0 +

(
∆7

2

)
d2 +

(
∆0

4 + ∆1
4 + ∆2

4

)
d4

for any choice of xt
i .

Next, we examine the non-zero values of δj (i, t) more careh76(c)24724001

7 Conclusions
We have concentrated here on elucidating the concepts and notation required to track
the iterates produced by APPS across processes so that we are able to show that there
is at least one subsequence of iterates that is common to all processes. The global
convergence argument given in [4] has four basic parts. First, we verify the algebraic
structure of the iterates. Second, we show that the subset of time steps at which
changes occur either to the best point or to the step-length control parameter is
infinite. Third, we prove that a subsequence of the step-length control parameters

[5] D. Levine (1995), “Users guide to the PGAPack parallel genetic algorithm li-
brary,” Tech. Rep. ANL–95/18, Argonne National Laboratory, Argonne, Illinois.

[6] V. Torczon (1992), “PDS: Direct search methods for unconstrained optimization
on either sequential or parallel machines,” Tech. Rep. 92–09, Rice University,
Department of Computational and Applied Mathematics, Houston, Texas.

[7] V. Torczon (1997), “On the convergence of pattern search algorithms,” SIAM J.
Optim., 7, pp. 1–25.

335

