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Human movement is an ongoing optimization
process. A baseball player attempts to contact a
ball with a bat so as to propel the latter as far as
possible; a rower tries to impart the maximum pos-
sible force to the water through an oar, while at the

same time avoiding any disturbance to the boat’s for-
ward motion. The cost functions involved are com-
plex, implicit, nonunique, fuzzy, and often subjec-
tive. Hundreds of muscles—most of which are not
under conscious control—are involved in every mo-
tion, and different body geometries, coaches, chore-
ographers, etc., prescribe different criteria for opti-
mal movement. At the same time, the results are
unmistakeable: the difference between breakdancing
and ballet is patently obvious, even to the untrained
eye.

Automatic generation of motion sequences is an
interesting problem that has applications in graphics
and animation, in training sequence generation, in
gait analysis, and even in artistic innovation[2, 3, 7].
The moving picture industry, needless to say, has
devoted tremendous numbers of cycles to this prob-
lem, but the algorithms involved rely on human an-
imators to specify “keyframes” that act as skeletons
for the movement. One can use mathematical in-
terpolation techniques like splines to move individ-
ual body parts from one keyframe to another, but
these kinds of methods do not address the prob-
lem of kinesiological illegality (e.g., that the knee
only bends 180 degrees, or that arms cannot pass
through ribcages). Many animation packages, such
as Life Forms or Poser1, use an augmented spline
approach that relies on a table of kinematic con-
straints to avoid illegal movements, but this type of
approach is somewhat ad hoc. One can also gener-
ate movement sequences by modeling the physics of
the body—e.g., using differential equations and solv-
ing the corresponding boundary-value problem[9].
Physics-based animation approaches are extremely
interesting and highly promising, but also very dif-
ficult; deducing the control equations that humans
use to recover their balance after a jump, for exam-
ple, is a Ph.D. thesis-level problem[13]. Stylistically
faithful interpolations are even harder to implement;

1fas.sfu.ca/lifeforms.html and www.metacreations.com/products/poser3/
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Figure 1: A joint transition graph that represents the movement patterns of the hips in a corpus of 38 short ballet pieces,
comprising 1720 individual postures. The numbers in each state identify the discretized position of the joint. Edge weights
and isolated vertices have been omitted in the interests of clarity. After [12].

neither splines nor F = ma can easily capture or en-
force, for instance, the requirement that classical bal-
let emphasizes position over motion2, and developing
a mathematics- or physics-based approach that does
so would be all but impossible.

In this short paper, we describe an alterna-
tive solution to the “tweening” problem: a class
of corpus-based schemes that generate physically
consistent and stylistically consonant movement se-
quences between pairs of specified body positions.
The computer program MotionMind, which instanti-
ates these ideas, takes as input a corpus of movement
sequences—e.g., ten Balanchine ballets—and a pair
of body postures A and B; its output is a movement
sequence that starts at A, ends at B, and fits the
style of the corpus. If A and B are are “far apart,”
as measured by some metric that takes into account
both the physics of the human body and the style
of the movement genre, this can be nontrivial. Mo-

tionMind solves this problem by using statistical and
graph-theoretic techniques to “learn” the grammar
that is implicit in the corpus, and then applying sim-
ple heuristic search methods to the resulting graphs
in order to generate movement sequences that are
consistent with that grammar.

MotionMind simplifies the complex task of repre-
senting human motion by disregarding limb length.
Each body posture is represented by a set of 23
quaternions—a common representational device in
graphics that consists of a 3-vector and an angle of
rotation around that vector[8]—each of which spec-
ifies the position of one of the body’s main joints
(omitting, e.g., finger and toe knuckles). To cap-
ture the movement patterns in a corpus, Motion-
Mind examines that corpus joint by joint, building
a directed, weighted graph for each one. Each ver-
tex in these joint transition graphs represents a joint
position (e.g., elbow bent to 10 degrees); edges repre-

2In ballet, body parts tend to describe piecewise-linear paths through space, emphasizing the positions at the junctions of
those linear segments; in modern dance, on the other hand, the motion between the endpoints is often the important feature,
and the choreography is crafted accordingly.
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sent observed transitions between the corresponding
positions, weighted using the negative log-likelihood:
small values correspond to transitions that are more
likely to occur. An example of such a graph is shown
in figure 1. The intricate patterns of human move-
ment are reflected by the complex topology of the
graph. Note that joint angle is a continuous vari-
able, which would imply a potentially infinite num-
ber of vertices; to avoid this problem, MotionMind
discretizes the quaternion space (cf., snapping ob-
jects to a grid in graphics).

After building the set of 23 joint transition
graphs that capture the movement grammar, Mo-
tionMind applies memory-bounded A* search[11] in
order to find interpolation sequences. In general,
A* finds a path from an initial state to a goal state
by progressively generating successors of the current
state in the search, computing a heuristic score that
combines the existing path length and an estimate
of the distance to the goal, and then expanding on
a best-score-first basis. See [12] for more details. In
this problem, the initial and goal “states” are actu-
ally 23 states in separate graphs, and MotionMind
needs to search all 23 graphs in parallel (for a path
from the knee angle in posture A to the knee an-
gle in posture B, another path from the ankle angle
in posture A to the ankle angle in posture B, and
so on). One obvious choice of scoring function—
which is based upon the assumptions that the se-
quence should be as short as possible and that com-
mon movements should be chosen over rare ones—is
to minimize the sum of the weights of the edges in
the path.

The basic idea here is fairly simple, but further
consideration reveals a variety of important addi-
tional constraints. One really wants the lengths of
all of those paths to be roughly equal, for exam-
ple, in order that the different body parts arrive at
the target posture at about the same time. More-
over, the search is complicated by the fact that joint
positions cannot be interpolated in isolation: the
movement patterns of the ankle, for instance, are
strongly influenced by whether or not the foot is on
the ground—information that is implicit in the po-
sitions of the pelvis, knees, etc. This requires that

the expansion of nodes in the search be context de-
pendent in a somewhat unusual way. MotionMind
uses a Bayesian network[10], shown in figure 2, to
model the constraints induced on joint motion by
gravity and body topology. The pelvis is the root of
this tree; three branches lead from this root to nodes
corresponding to the right hip, the left hip, and the
lower spine3. Each hip joint is the parent node to a
knee, and so on. MotionMind assigns a conditional
probability distribution, estimated from the corpus,
to every (parent,child) pair in the tree, and models
coordination by incorporating this number into the
A* scoring function.

Figure 3 shows an example MotionMind se-
quence, computed using a ballet corpus. The start-
ing and ending body postures (top left and top right
in figure 3, labeled 1 and 10 , respectively) are
quite different; note the facing of the dancer and the
weight distribution on the feet, for example. Mo-
tionMind’s eight-move interpolation sequence moves
between those positions in a very natural way. Its
first move, for instance, is to lower the left leg, a
natural strategy if one is going to change one’s fac-
ing and end up on two feet. The following move is
a simple weight shift (frames 4 and 5 ), in prepa-
ration for a lift of the right leg. This lift, which is
not strictly necessary to move from the fifth frame to
the tenth, is an innovation that the program inserted
because of the observed patterns in the corpus; it
reflects the fact that ballet dancers rarely spin with
both feet flat on the ground. Perhaps the most inter-
esting thing about this interpolation sequence, from
a balletic standpoint, is the relévé4 that the inter-
polation procedure inserted between frames 6 and
10 . Many relévés appear in the corpus, but none

of them are associated with upper body positions
that resemble the one that appears in this sequence.
MotionMind has invented a physically and stylisti-
cally appropriate way to move the dancer between
the specified positions. The interpolation sequence
in figure 3 includes a variety of other stylistically
consistent innovations as well; consider, for exam-
ple, the uplifted chest and chin in frames 7 and
9 —posture elements that are quintessential ballet

style. Recall that these postures were not simply
3The sacrum and the five lumbar vertebrae are lumped together. This compromise sacrifices back suppleness for lowered

complexity.
4A relévé, which consists of lifting up on one’s toes, is a stylistically required component of a direction shift in ballet.
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(a) (b)

Figure 2: An influence diagram that explicitly represents the coordination of joints of the human body. Part (a) depicts the
body and part (b) shows the inter-joint dependencies induced by gravity and topology: for instance, the position of the pelvis
influences the positions of both hips hr and hl and the lumbar spine l, but the right and left ankles kr and kl do not directly
influence one another. Without this simplifying assumption, the search space for this problem is intractable. After [12].

pasted in verbatim from the corpus; they were syn-
thesized joint by joint using the transition graphs
and influence-diagram directed A* search, and their
fit to the genre is strong evidence of the success of
the methods described in the previous section. mpeg
movies of this sequence, along with many others, are
available on the web[1].

MotionMind’s algorithms have several interest-
ing failure modes. Because of the directed nature
of the graphs, the search algorithm sometimes has
trouble finding interpolation subsequences between
body positions that occur in inverted temporal or-
der (e.g., reversing a baseball swing). Moreover, it
often finds relatively long paths between positions
that appear very similar; in one such instance, where
the task was a simple 90-degree rotation of the right
shoulder around the long axis of the arm, Motion-
Mind constructed an 65-move sequence that involved
much leg and trunk movement. Both of these prob-
lems are caused by limited corpus size. 1720 postures
is an extremely meager sampling of human motion,
so the resulting joint transition graphs are far from
being connected, which means that some joint ori-
entations are just not reachable from others. Even
when the graphs are connected, the search may have
to wander all over the graph to find a path between
two given vertices. If the corpus were large and rich,
the graphs would be highly connected, which would

give the search algorithms more leeway. In the ex-
isting corpora, however, the paucity of edges con-
strains the search to very narrow (and long) paths
that can translate to stilted, idiosyncratic movement
sequences. This is an unavoidable problem in this
application, unfortunately; the dance world has not
yet embraced the notion of computer animation, so
the availability of animated dances is quite limited,
and motion-capture studios are expensive to set up
and run. The third interesting failure mode arises
from the greedy search strategy, which creates “in-
efficiencies” in the interpolation sequences—places
where the dancer appears to be headed towards the
goal state, but then moves away. For example, one of
the interpolation goals in figure 3 is to change the fig-
ure’s facing from left to right. By the fourth frame,
the dancer has turned to the right, but in the fifth
frame s/he has turned back to the left again, which
is part of what necessitates the relévé sequence be-
tween frames 6 and 7 . Finally, note that some
search strategies—e.g., always taking the highest-
probability branch—can be a significant source of
cliché.

The primary motivation for the development of
these methods was our work on a mathematical
technique[4] that automatically creates variations on
predefined motion sequences—an idea that was in-
spired by a similar scheme[5, 6] that uses a related



Volume 12 Number 1 March 2001 5

Figure 3: A “tweening” sequence generated by MotionMind. The starting and ending positions are shown at the top left
and top right, respectively; the eight frames below them were computed by MotionMind. After [12].

procedure to generate musical variations. This ap-
proach uses the mathematics of chaos to shuffle a
predefined movement sequence by “wrapping” that
sequence around a chaotic attractor. This estab-
lishes a symbolic dynamics that links the movement
progression and the attractor geometry, which one
can then use to generate variations on that orig-
inal piece. Variations generated in this manner,
whether musical or choreographic, are both aestheti-
cally pleasing and strikingly reminiscent of the orig-
inal sequences. The stretching and folding of the
chaotic dynamics guarantee that the ordering of the
pitches or movements in the variation is different
from the original sequence; at the same time, the
fixed geometry of the attractor ensures that a chaotic
variation of Bach’s Prelude in C Major or of a short
Balanchine ballet sequence are related to the original
piece in a sense reminiscent of the classic “variation
on a theme.” Broadly speaking, the chaotic varia-
tions resemble the originals with some shuffling of
coherent subsequences. This is the primary source
of the stylistic originality of the chaotic variation
scheme — in fact, this type of subsequence shuffling
is a well-established creative mechanism in modern
choreography. One problem with any choreographic
technique, automated or not, that involves subse-
quence reordering, however, is that the transitions
at the subsequence boundaries can be quite jarring,
and the interpolation algorithms covered in this pa-
per can smooth these kinds of transitions in a man-
ner that is both kinesiologically and stylistically con-

sistent.

The “goal” of choreography is aesthetic appeal,
so it is difficult to analyze the results of this work
using standard scientific criteria5. However, there
are some standard rules, procedures, and patterns in
certain dance and martial arts genres; as described
elsewhere[12], analyses based on these criteria sug-
gest that MotionMind’s sequences are indeed stylis-
tically consonant. Another interesting way to eval-
uate these results is to construct a Turing test: say,
ten sequences generated by a human choreographer
and ten MotionMind sequences, in randomized or-
der. We have put together such a test and admin-
istered it to roughly 100 people. The results are
mixed; most of MotionMind’s sequences are indis-
tinguishable from human-generated ones, but a few
are awkward in an artificial and recognizeable way.
This, in turn, brought out another interesting vari-
able; students who are majoring in dance found this
awkwardness esthetically appealing, while computer
science majors did not.

By applying techniques from statistics, graph
theory, and heuristic search, the corpus-based inter-
polation methods described in this paper automat-
ically construct interpolation sequences that move
from one specified body posture to another in a phys-
ically and stylistically coherent fashion. Though our
objective in doing this was to tailor generic strate-
gies for a specific high-dimensional search problem
to an unusual and demanding domain, the results
could certainly be extended to other domains where

5The very notion of objective, quantifyable evaluation elicited much consternation and mirth—along with some offense—
from our dance colleagues.
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the genre of sequence is important, such as speech
recognition (e.g., filling in missing parts of a sig-
nal) or text. Finally, the implementation of these
algorithms allows for arbitrary body topologies, so
MotionMind is by no means limited to human mo-
tion sequences—though one would, of course, have
to adapt the quaternion-based symbol set and the
influence diagram to the topology of the limbs and
joints that are involved.
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1. Introduction

The problem of how to putt provides a simple frame-
work for a discussion of trajectory optimization. The
discussion in this paper is taken from a longer pa-
per [9] on case studies in trajectory optimization.
The purpose of these studies is to illustrate how re-
cent advances in algorithms and modeling languages
now make it easy to solve once difficult optimization
problems using off-the-shelve software. A secondary
goal is to show that it is nonetheless still possible to
make subtle errors in a model which will render it
(a) more difficult than it needs to be or (b) infeasible
or, worse, (c) feasible but giving the wrong answer.
In the past, trajectory optimization problems were
thought to be difficult to solve and when failures oc-
cured it was unclear whether they were due to bad
algorithms or bad models. Today, one can say that
failures are most likely due simply to bad models.

We express our optimization models in the ampl

modeling language [4]. This language provides a
common mechanism for conveying problems to codes
to solve them. When solving problems we gener-
ally use two different solvers: (a) loqo [7, 8, 10, 2],
which implements an interior-point method for gen-
eral nonlinear optimization and (b) snopt [5], which
implements an active set strategy with a quasi-
Newton method for the QP subproblem.

One of the lessons to be learned with the putting
example is how easy it is to make a wrong model.
With this in mind, we advise the interested golfer to
read beyond the next section because the first model,
right as it may appear, is wrong.

http://www.cs.colorado.edu/~lizb/chaotic-dance.html
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2. The Alessandrini Model

We begin with a discussion of the problem essentially
as it appears in [1].

Given a golf ball sitting at rest on a putting
green, the problem is to figure out how to hit the
ball so that it will go into the cup. To make sure
that it does not just skim over the cup and stop at
some point far beyond, we try to have the ball arrive
at the cup with the smallest speed possible.

The Normal Vector. We assume that the eleva-
tion of the green is given as (x, y, z(x, y)) and that its
shape is given by (x/a)2 + (y/b)2 ≤ 1. Two tangent
vectors to the surface are provided by (1, 0, ∂z/∂x)
and (0, 1, ∂z/∂y). By taking the cross product of
these two vectors, we obtain an upward pointing nor-
mal vector to the surface:

(−∂z/∂x,−∂z/∂y, 1).

The normal force N exerted by the surface of the
green on the golf ball must point in this direction
and its magnitude must be such that the total force
in this direction vanishes (to keep the ball rolling on
the surface).

The Normal Force. Since the only forces that are
not tangential to the green are the force of gravity
and the normal force itself, we must have the projec-
tion of the force of gravity on the normal direction
be exactly opposite to the magnitude of the normal
force:

−mg(ez ·N)/‖N‖ = −‖N‖,

where m is mass of the ball, g is acceleration due to
gravity, ez is the unit vector pointing in the verti-
cal direction, and of course N is proportional to the
normal vector given above. From this relation, we
get that

Nz =
mg

(∂z/∂x)2 + (∂z/∂y)2 + 1

and that

Nx = −∂z/∂xNz Ny = −∂z/∂yNz.

Friction. There is friction between the ball and
the green. It is assumed to be proportional to the
normal force and to point in a direction opposite to
the velocity:

F = −µ‖N‖ v

‖v‖
.

Equations of Motion. If we denote the trajec-
tory by u(t) = (x(t), y(t), z(t)), then the equations
of motion are

v = u̇

a = v̇

ma = N + F −mgez. (1)

Boundary Conditions. The initial and final posi-
tions are known,

u(0) = u0 and u(T ) = uf ,

but the time T at which the final position is reached
is a variable.

This problem can be cast as a (nonconvex) non-
linear optimization problem by discretizing the time
interval [0, T ] into N small time segments and writ-
ing discrete approximations for the derivatives that
appear in the model. There are many ways to do
this. In this paper, we discuss two popular dis-
cretizations: midpoint discretization and trapezoidal
discretization. We begin with the midpoint method.
Letting x[j], y[j], and z[j] denote the positional
coordinates at time jT/N , j=0,1,...,N, we define
discrete approximations to the three components of
velocity at the midpoint of each time interval as fol-
lows:

vx[j+0.5]=(x[j+1]-x[j])/(T/N),
vy[j+0.5]=(y[j+1]-y[j])/(T/N),
vz[j+0.5]=(z[j+1]-z[j])/(T/N),

j=0,1,...,N-1. Discrete approximations for accel-
eration are defined similarly:

ax[j] = (vx[j+0.5]-vx[j-0.5])/(T/N),
ay[j] = (vy[j+0.5]-vy[j-0.5])/(T/N),
az[j] = (vz[j+0.5]-vz[j-0.5])/(T/N),

j=1,...,N-1. The equations of motion given by (1),
together with the boundary conditions, complete the
constraints defining the model:

ax[j] = (Nx[j] + Fr_x[j])/m,
ay[j] = (Ny[j] + Fr_y[j])/m,
az[j] = (Nz[j] + Fr_z[j])/m - g.

Here, Nx[j], Ny[j], and Nz[j] are shorthand for
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Nz[j] = m*g/(dzdx[j]^2 + dzdy[j]^2 + 1),
Nx[j] = -dzdx[j]*Nz[j],
Ny[j] = -dzdy[j]*Nz[j]

and Fr x[j], Fr y[j], and Fr z[j] are shorthand
for the three components of friction along the trajec-
tory. Our first ampl model for this problem is shown
in Figure 1. In this particular instance the shape of
the green involves two rather flat, but slightly sloped,
sections with a smooth ramp between them. The
ball is initially on the lower section and the cup is
on the higher section, a difficult putt similar to the
one Tiger Woods faced on the 18th hole in the final
round of the 2000 PGA Championship. The function
z(x, y) we use to define this ramp is

z(x, y) = −0.3 arctan(y) + 0.05(x+ y).

Neither loqo nor snopt was able to solve the model
shown in Figure 1. When this happens, it is natu-
ral to suspect that the problem is infeasible. Why
should the model in Figure 1 be infeasible? Alessan-
drini was able to solve supposedly the same model
(using a different elevation function for the green).
We tried several different surfaces and they all fail
with all codes except when the surface is planar (in-
cluding, of course, tilted planar surfaces). Every op-
timizer we tried is able to solve such planar problems
easily. This proved to be a good hint that something
is wrong with the model.

After much pondering, it occured to us that z is
being specified in two ways—once as an explicit func-
tion of x and y and a second time as the solution to
a differential equation. Since the differential equa-
tion is computed by a somewhat crude discretization,
it is entirely possible that the two specifications are
enough different from each other to render the model
infeasible. So, we tried two things:

1. Removing from the model the explicit state-
ment of how z depends on x and y. That is,
we changed

var z{i in 0..n} = -0.3*atan(y[i])
+ 0.05*(x[i]+y[i]);

to just

var z{i in 0..n};

(This, we later learned, is how Alessandrini for-
mulated the problem.)

2. Removing from the model the part of the dif-
ferential equation that relates to the z compo-
nent of the trajectory. That is, we removed the
constraints newt z, zinit, and zfinal.

The first of these changes produces a model that
solves easily while the second one appears still to be
infeasible. Hence, we seem to be on to something but
more errors may be lurking. The trajectory found
with the elevation constraint removed is shown in
Figure 2. This trajectory looks almost right except
that it seems to go airborne in the early part of the
trajectory and then tunnel into the grass in the fi-
nal stages. The ball is clearly not staying on the
green but instead is flying through the air to the
cup. This indicates that our differential equation for
z is wrong. And, if it is wrong, then the equations
for x and y ought to be wrong as well.

But what is wrong? The derivation was
straightforward—how could it possibly be wrong?

3. The Correct Putting Model

The key to understanding what is wrong with our
implementation of the Alessandrini model is con-
tained in the observation that the model in Figure
1 is solvable when and only when the surface of the
green is planar. This suggests that the derivation is
only valid for that case. What is different when the
surface is not planar? Well, if you drive a car over
the crest of a hill you feel lighter than normal (pun
intended), whereas if you speed through a valley you
feel heavier. The weight that one feels is the mag-
nitude of the normal force. Hence, the magnitude
of the normal force is not constant when the surface
has hills and valleys. As you go through a valley,
the magnitude of the normal force must be greater
than nominal in order to accelerate you along the
arc defining the upward bending curve.

From this discussion, it is easy now to see that
the magnitude of the normal force must be such that
it compensates both for the pull of gravity and for
the out-of-tangent-plane acceleration along the path:

‖N‖ = mg
ez ·N
‖N‖

+m
a(t) ·N
‖N‖

.
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param g := 9.8; # acc due to gravity

param m := 0.01; # mass of a golf ball

param x0 := 1; # coords of start pt

param y0 := 2;

param xn := 1; # coords of ending pt

param yn := -2;

param n := 50; # num of time points

param mu;

var T >= 0; # total time for the putt

var x{0..n}; # coords of the traj

var y{0..n};

var z {i in 0..n}

= -0.3*atan(y[i])+0.05*(x[i]+y[i]);

var dzdx{i in 0..n}

= 0.05;

var dzdy{i in 0..n}

= -0.3/(1+y[i]^2) + 0.05;

# v[i] denotes the deriv at midpt of

# the interval i(T/n) to (i+1)(T/n).

var vx{i in 0..n-1} = (x[i+1]-x[i])*n/T;

var vy{i in 0..n-1} = (y[i+1]-y[i])*n/T;

var vz{i in 0..n-1} = (z[i+1]-z[i])*n/T;

# a[i] denotes the accel at midpt of

# the interval (i-0.5)(T/n)

# to (i+0.5)(T/n), i.e. at i(T/n).

var ax{i in 1..n-1} = (vx[i]-vx[i-1])*n/T;

var ay{i in 1..n-1} = (vy[i]-vy[i-1])*n/T;

var az{i in 1..n-1} = (vz[i]-vz[i-1])*n/T;

var Nz{i in 1..n-1}

= m*g/(dzdx[i]^2 + dzdy[i]^2 + 1);

var Nx{i in 1..n-1} = -dzdx[i]*Nz[i];

var Ny{i in 1..n-1} = -dzdy[i]*Nz[i];

var Nmag{i in 1..n-1}

= m*g/sqrt(dzdx[i]^2 + dzdy[i]^2 + 1);

var vx_avg{i in 1..n-1}

= (vx[i]+vx[i-1])/2;

var vy_avg{i in 1..n-1}

= (vy[i]+vy[i-1])/2;

var vz_avg{i in 1..n-1}

= (vz[i]+vz[i-1])/2;

var speed{i in 1..n-1}

= sqrt(vx_avg[i]^2 + vy_avg[i]^2

+ vz_avg[i]^2);

var Frx{i in 1..n-1}

= -mu*Nmag[i]*vx_avg[i]/speed[i];

var Fry{i in 1..n-1}

= -mu*Nmag[i]*vy_avg[i]/speed[i];

var Frz{i in 1..n-1}

= -mu*Nmag[i]*vz_avg[i]/speed[i];

minimize finalspeed:

vx[n-1]^2 + vy[n-1]^2;

s.t. newt_x {i in 1..n-1}:

ax[i] = (Nx[i] + Frx[i])/m;

s.t. newt_y {i in 1..n-1}:

ay[i] = (Ny[i] + Fry[i])/m;

s.t. newt_z {i in 1..n-1}:

az[i] = (Nz[i] + Frz[i] - m*g)/m;

s.t. xinit: x[0] = x0;

s.t. yinit: y[0] = y0;

s.t. zinit: z[0]

= -0.3*atan(y[0])+0.05*(x[0]+y[0]);

s.t. xfinal: x[n] = xn;

s.t. yfinal: y[n] = yn;

s.t. zfinal: z[n]

= -0.3*atan(y[n])+0.05*(x[n]+y[n]);

s.t. onthegreen {i in 0..n}:

x[i]^2 + y[i]^2 <= 16;

let T := 1.5;

let mu := 0.07;

let {i in 0..n}

y[i] := (i/n)*yn + (1-i/n)*y0;

let {i in 0..n}

x[i] := y[i]^2/2;

solve;

Figure 1: A first ampl model for the putting problem. Note that the variable v[i] in the model is the
same as v[i+0.5] in the text.
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Figure 2: Two views of the trajectory obtained from the model in Figure 1 with the elevation constraint
removed. Note: For the online version of this paper, you can click on the figure to start a 3-D animation.
In the animation, click on the flag to start the ball rolling.

From this relation we can deduce that

Nz = m
g − ax(t) ∂z∂x − ay(t)

∂z
∂y + az(t)

(∂z/∂x)2 + (∂z/∂y)2 + 1
.

Everything else in the previous derivation remains
the same.

The complete correct model is shown in Figure
3. As shown in Figure 4, this trajectory does in-
deed follow the surface correctly (as it must given
the model).

4. Trapezoidal Discretization

The second common discretization technique is
called the trapezoidal method. With this method,
values for velocity and acceleration are defined at the
same discrete times as for position; that is, at jT/N,
j=0,1,...,N. Instead of giving a formula defining
each component of velocity in terms of a difference
of the corresponding component of position, we give
constraints that say that the average value at two
adjacent times is equal to the appropriate difference:

(vx[i]+vx[i-1])/2 = (x[i]-x[i-1])/(T/n);
(vy[i]+vy[i-1])/2 = (y[i]-y[i-1])/(T/n);
(vz[i]+vz[i-1])/2 = (z[i]-z[i-1])/(T/n);

Constraints that must be satisfied by the compo-
nents of acceleration are similar:

(ax[i]+ax[i-1])/2 = (vx[i]-vx[i-1])/(T/n);

(ay[i]+ay[i-1])/2 = (vy[i]-vy[i-1])/(T/n);
(az[i]+az[i-1])/2 = (vz[i]-vz[i-1])/(T/n);

The ampl model for the trapezoidal discretization
using the correct formulation of the putting problem
is shown in its entirety in Figure 5. Both snopt and
loqo solve this formulation of the problem but each
takes about twice as long as when solving the corre-
sponding midpoint discretization formulation. Fur-
thermore, loqo requires a slight relaxation in the
stopping criteria (the infeasibility tolerance needs to
be increased from its default of 10−6 to 2× 10−5).

The fact that loqo requires a relaxation in
the stopping rule suggests that something might be
wrong with the model. John Betts [3] seems to have
identified the issue. He points out that the speed of
the ball as it arrives at the cup is zero and hence
there is a singularity in the differential equation at
the final time. Of course, a numerical approximation
might never experience the singularity exactly but it
still can feel the effect. For the problem at hand, at
the optimal solution loqo has speed[n] = 2.6e-6
and snopt has speed[n] = 1.7e-6. These values
are not zero but they are getting close and one could
imagine that numerical issues related to the singu-
larity of the differential equation are beginning to
enter in here. To test this, we changed the opti-
mization objective from minimizing the final speed
to minimizing the deviation of the final speed from
some small prescribed value. In particular, we tried
(vx[n]^2 + vy[n]^2 - 0.25)^2. With this objec-

http://www.princeton.edu/~rvdb/tex/trajopt/putt/puttwrong.wrl
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param g := 9.8; # acc due to gravity

param m := 0.01; # mass of a golf ball

param x0 := 1; # coords of start pt

param y0 := 2;

param xn := 1; # coords of ending pt

param yn := -2;

param n := 50; # num of time points

param mu;

var T >= 0; # total time for the putt

var x{0..n}; # coords of the traj

var y{0..n};

var z {i in 0..n}

= -0.3*atan(y[i])+0.05*(x[i]+y[i]);

var dzdx{i in 0..n}

= 0.05;

var dzdy{i in 0..n}

= -0.3/(1+y[i]^2) + 0.05;

# v[i] denotes the deriv at midpt of

# the interval i(T/n) to (i+1)(T/n).

var vx{i in 0..n-1} = (x[i+1]-x[i])*n/T;

var vy{i in 0..n-1} = (y[i+1]-y[i])*n/T;

var vz{i in 0..n-1} = (z[i+1]-z[i])*n/T;

# a[i] denotes the accel at the midpt of

# the interval (i-0.5)(T/n)

# to (i+0.5)(T/n), i.e. at i(T/n).

var ax{i in 1..n-1} = (vx[i]-vx[i-1])*n/T;

var ay{i in 1..n-1} = (vy[i]-vy[i-1])*n/T;

var az{i in 1..n-1} = (vz[i]-vz[i-1])*n/T;

var Nz{i in 1..n-1}

= m*

(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])

/(dzdx[i]^2 + dzdy[i]^2 + 1);

var Nx{i in 1..n-1} = -dzdx[i]*Nz[i];

var Ny{i in 1..n-1} = -dzdy[i]*Nz[i];

var Nmag{i in 1..n-1}

= m*

(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])

/sqrt(dzdx[i]^2 + dzdy[i]^2 + 1);

var vx_avg{i in 1..n-1} = (vx[i]+vx[i-1])/2;

var vy_avg{i in 1..n-1} = (vy[i]+vy[i-1])/2;

var vz_avg{i in 1..n-1} = (vz[i]+vz[i-1])/2;

var speed{i in 1..n-1}

= sqrt(vx_avg[i]^2 + vy_avg[i]^2

+ vz_avg[i]^2);

var Frx{i in 1..n-1}

= -mu*Nmag[i]*vx_avg[i]/speed[i];

var Fry{i in 1..n-1}

= -mu*Nmag[i]*vy_avg[i]/speed[i];

var Frz{i in 1..n-1}

= -mu*Nmag[i]*vz_avg[i]/speed[i];

minimize finalspeed:

vx[n-1]^2 + vy[n-1]^2;

s.t. newt_x {i in 1..n-1}:

ax[i] = (Nx[i] + Frx[i])/m;

s.t. newt_y {i in 1..n-1}:

ay[i] = (Ny[i] + Fry[i])/m;

s.t. xinit: x[0] = x0;

s.t. yinit: y[0] = y0;

s.t. xfinal: x[n] = xn;

s.t. yfinal: y[n] = yn;

s.t. onthegreen {i in 0..n}:

x[i]^2 + y[i]^2 <= 16;

let T := 1.5;

let mu := 0.07;

let {i in 0..n} y[i] := (i/n)*yn + (1-i/n)*y0;

let {i in 0..n} x[i] := y[i]^2/2;

solve;

Figure 3: A second, and this time correct, ampl model for the putting problem. This version is very
similar to before—the main difference is in the definitions of Nz and Nmag.
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Figure 4: Two views of the trajectory from the correct model shown in Figure 3. Note how the trajectory
follows the contour of the green.

tive function, both solvers are able to find a solution
in a much more robust fashion (i.e., using fewer it-
erations and being successful over a wider range of
choice of some of the other parameters in the prob-
lem). Our local golf expert (aka John Mulvey) in-
dicates that this is the objective function used by
real golfers anyway. He says that a real golfer does
not want the ball to arrive at the cup with too little
speed because then small imperfections in the green
can have rather large unpredictable effects in those
last few inches near the cup.

It is interesting to note that the midpoint rule is
“less” bothered by the singularity issue. The reason
is that the final speed in that model is the average
final speed over the last time interval. This num-
ber is small but not as small as the final speed in
the trapezoidal rule. For example, loqo gets a fi-
nal speed of 7e-3 with this discretization, which is a
few orders of magnitude larger than it got with the
trapezoidal rule.

5. Lessons

1. It is deceptively easy to formulate a problem
incorrectly.

2. Incorrect formulations are surprisingly likely to
be infeasible.

3. Infeasibility is especially hard for nonlinear
solvers to detect reliably.

4. In the early days of optimization, a nonconvex
problem with 10 or more variables was consid-
ered exceedingly hard to solve. In its most
compact form, the problem here only really
has 2 decision variables: the x and y compo-
nents of the initial velocity vector that the put-
ter imparts to the golf ball. After giving the
ball its initial kick, the rest is determined by
physics. One could formulate the problem this
way. There would be just two decision vari-
ables and there would be a fairly complicated
integrator function that would determine if the
trajectory actually arrives at the hole and, if it
does, the speed at which it arrives there. Us-
ing this integrator function as a “black box”,
one could make an optimization problem with
just two variables. However, with modern op-
timization technology it is easy to incorporate
the physics into the optimization model as we
have done here and get a much larger model
but one that is not any more difficult to solve.
In fact, by expressing both the optimization
part of the model and the physics in the same
place and using the same “language” provides
a level of model control that was totally lacking
before. For example, if the physics is wrong,
as it was in our first attempt, then the opti-
mization problem is likely to be infeasible. If
the physics and the optimization are separated
from each other it is especially hard to identify
what (or who!) is at fault. By having them

http://www.princeton.edu/~rvdb/tex/trajopt/putt/putt.wrl
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param g := 9.8; # acc due to gravity

param m := 0.01; # mass of a golf ball

param x0 := 1; # coords of start pt

param y0 := 2;

param xn := 1; # coords of ending pt

param yn := -2;

param n := 50; # num of time points

param mu;

var T >= 0; # total time for the putt

var x{0..n}; # coords of the traj

var y{0..n};

var z {i in 0..n}

= -0.3*atan(y[i])+0.05*(x[i]+y[i]);

var dzdx{i in 0..n}

= 0.05;

var dzdy{i in 0..n}

= -0.3/(1+y[i]^2) + 0.05;

var vx{i in 0..n};

var vy{i in 0..n};

var vz{i in 0..n};

var ax{i in 0..n};

var ay{i in 0..n};

var az{i in 0..n};

var Nz{i in 0..n}

= m*

(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])

/(dzdx[i]^2 + dzdy[i]^2 + 1);

var Nx{i in 0..n} = -dzdx[i]*Nz[i];

var Ny{i in 0..n} = -dzdy[i]*Nz[i];

var Nmag{i in 0..n}

= m*

(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])

/sqrt(dzdx[i]^2 + dzdy[i]^2 + 1);

var speed{i in 0..n}

= sqrt(vx[i]^2 + vy[i]^2 + vz[i]^2);

var Frx{i in 0..n}

= -mu*Nmag[i]*vx[i]/speed[i];

var Fry{i in 0..n}

= -mu*Nmag[i]*vy[i]/speed[i];

var Frz{i in 0..n}

= -mu*Nmag[i]*vz[i]/speed[i];

minimize finalspeed: vx[n]^2 + vy[n]^2;

s.t. vx_def {i in 1..n}:

(vx[i]+vx[i-1])/2=(x[i]-x[i-1])/(T/n);

s.t. vy_def {i in 1..n}:

(vy[i]+vy[i-1])/2=(y[i]-y[i-1])/(T/n);

s.t. vz_def {i in 1..n}:

(vz[i]+vz[i-1])/2=(z[i]-z[i-1])/(T/n);

s.t. ax_def {i in 1..n}:

(ax[i]+ax[i-1])/2=(vx[i]-vx[i-1])/(T/n);

s.t. ay_def {i in 1..n}:

(ay[i]+ay[i-1])/2=(vy[i]-vy[i-1])/(T/n);

s.t. az_def {i in 1..n}:

(az[i]+az[i-1])/2=(vz[i]-vz[i-1])/(T/n);

s.t. newt_x {i in 0..n}: ax[i] = (Nx[i] + Frx[i])/m;

s.t. newt_y {i in 0..n}: ay[i] = (Ny[i] + Fry[i])/m;

s.t. xinit: x[0] = x0;

s.t. yinit: y[0] = y0;

s.t. xfinal: x[n] = xn;

s.t. yfinal: y[n] = yn;

s.t. onthegreen {i in 0..n}:

x[i]^2 + y[i]^2 <= 16;

let T := 1.5;

let {i in 0..n} x[i] := (i/n)*xn + (1-i/n)*x0;

let {i in 0..n} y[i] := (i/n)*yn + (1-i/n)*y0;

let {i in 0..n} vx[i] := (xn-x0)/T;

let {i in 0..n} vy[i] := (yn-y0)/T;

let mu := 0.07;

solve;

Figure 5: The correct putting model with a trapezoidal discretization. Note how positions, velocities, and
accelerations are all defined over the same index set.
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together, it is easy to print out variables, tra-
jectories, dual variables, etc. and all of this
information can be useful in figuring out what
is wrong with a model.

5. It wasn’t mentioned in the discussion above,
but one of the lessons in this example is how
important it is to give an initial solution that is
close to the optimal solution. For example, the
optimal value of T is close to 2 in the exam-
ples above. We initialized T to be 1.5. Both
loqo and snopt find the right solution for
any value of T between 1 and 3 but outside
this range the solvers start to get into trouble.
For example, neither of the solvers was able to
solve the problem when initialized with T = 5.

6. Final Remarks

We have considered just one trajectory optimization
problem—the putting problem. With this problem a
number of issues came up that needed to be resolved.
It turns out that these same issues are common in
trajectory optimization problems. Hence, this ex-
ample serves as a good prototype for trajectory op-
timization in general.

Finally, note that in preparing this case study we
contacted Stephen Alessandrini to ask him about the
fact that his model was incorrect. It turns out that
when he derived the equations for his model his in-
terest was in the planar case. It was only at the final
stages of writing that he added a nonplanar example
and he didn’t realize the equations didn’t apply. In-
terestingly, it was this last example that caught the
eye of others, see for example [3], and for a time the
incorrect model propogated unchecked.

This problem is not purely an academic exercise.
See [6] for a description of a system in which putting
trajectories were used for real-time animation during
television coverage.
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and Software and is co-sponsored by the Fields In-
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SCOPE: The conference aims to bring together a
diverse group of people from both discrete and con-
tinuous optimization, working on both theoretical
and applied aspects. We aim to bring together re-
searchers from both the theoretical and applied com-
munities who do not usually get the chance to inter-
act in the framework of a medium-scale event.
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berghe (UCLA) David Williamson (IBM Almaden)
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The Mathematical Programming Society and the
Optimization Technology Center (Argonne / North-
western) are pleased to announce ”Optimization On-
line”: a new web-based repository of e-prints on op-
timization and related topics available at

http://www.optimization-online.org
We encourage everyone in the optimization com-

munity to post technical reports on the site and to
check out the latest reports by others. After many
months of preparation, we believe that our site is

ready to handle a tidal wave of submissions, so give
us your best shot!

You can also sign up for a digest of submissions,
to be emailed at the end of each month.

Submissions are moderated by members of a Co-
ordinators Board, who check for correctness and
completeness of the author-title-URL information
but do not usually referee the content of each report.
Authors may change their report listing and up-
load new versions of their reports as necessary. Au-
thors are responsible for following applicable copy-
right laws, removing their report when required to
do so by its publisher.

The scope of technical reports to be posted on
Optimization Online roughly corresponds to that of
the major journals in optimization. Reports are or-
ganized by a subject classification scheme; see site
for details.

Please send comments and questions about Op-
timization Online to optonlin@mcs.anl.gov

Karen Aardal, Jean-Pierre Goux, Sanjay Mehro-
tra, Steve Wright Principal Coordinators, Optimiza-
tion Online.

Comments from the Chair
and Editor

I am honoured to have been chosen as the new
Chair of the SIAM Activity Group on Optimization.
I have been in touch with the rest of the board and
we are all enthusiastic to continue making this an ex-
citing group. I am looking forward to working with
our new board:

Vice Chair: Philippe L. Toint
Program Director: Anders Forsgren
Secretary/Treasurer: Natalia M. Alexan-
drov
Newsletter: Juan Meza (leaving unfortu-
nately)

We owe a debt of thanks to Tom Coleman for his
excellent work as Chair. SIAG/OPT has thrived un-
der his guidance. I hope to continue his good work.
A historical note: Tom was the fifth chair of SIAG/OPT

http://www.cas.mcmaster.ca/~oplab/confs/mopta01/
http://www.optimization-online.org
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following Jorge Moré. Tom got his doctorate in my de-
partment at the University of Waterloo under the super-
vision of Andy Conn, the third chair of SIAG/OPT. And
Andy was preceded by John Dennis, an adjunct professor
at University of Waterloo. So, other than Jorge and the
first Chair Paul Boggs, I am following a Waterloo tradi-
tion in SIAG/OPT.

We also need to thank Juan Meza for his excel-
lent job as editor of our Newsletter. Unfortunately,
Juan is not continuing on. We will announce his
replacement as soon as possible.

Status

To get an idea of recent events, I looked at pre-
vious issues of the SIAG Optimization Newsletter at:
http://csmr.ca.sandia.gov/∼meza/siagopt/news.html.
In particular, the following is from the Chairman’s
Column in No 9, of the Fall/97 issue:

“The SIAG/OPT is alive and healthy.
We continue growing; in 1995 the mem-
bership was 592, in 1996 we grew to 630,
and now we are at 674. We are the
fastest-growing SIAG by far, and the sec-
ond largest SIAG.”

Following are my comments stimulated by Jorge
Moré’s Chairman’s column of 1997.

The SIAM Optimization meetings have been
successful over the years. The next one
will be held in Toronto, Canada, May 20-23,
2002, http://iris.gmu.edu/∼asofer/opt2002.html.
This is being held together with the the-
matic year Numerical and Computational Chal-
lenges in Science and Engineering August 2001
to August 2002, at the Fields Institute, URL:
www.fields.utoronto.ca/programs/scientific/01-
02/numerical/. As there will be many visitors in
Toronto for the thematic year, the meeting promises
to be doubly interesting. As is our custom, the
SIAG/OPT Prize will be announced at the meeting
and the winner will present a plenary talk.

The next two issues of SIAG/OPT newsletter,
Views & News, are in the pipeline. We continue to
solicit articles and suggestions from the membership.

The SIAG/OPT Web site
http://www.siam.org/siags/siagopt.htm points to
our own SIAG/OPT webpage. This was handled

by Ariela Sofer and will be taken over by Natalia
Alexandrov. We continue to encourage members
with home pages to register their home pages with
SIAM. Still, only a few members (about 160) have
taken advantage of this offer. If you wish to be
listed, send a message to Laura Helfrich at hel-
frich@siam.org with your name and the URL for
your Web page. We will continue to make this web
page useful and interesting.

The e-mail forum continues. You can use this
forum for technical questions, announcements of pa-
pers, conferences, books, and software. In partic-
ular, technical questions are encouraged. Perhaps,
this will lead to interesting discussions. You can use
this forum by sending a message to opt@siam.org.

Multi-Media

My emphasis during my tenure as chair will
be on providing information related to multi-media
and mathematics, and extending the abilities of
SIAG/OPT in disseminating this type information.

Several interesting related web sites are:

1. The Optimization Technology Cen-
ter and the NEOS guide/server at
http://www.ece.nwu.edu/OTC/ has to be the
first choice in this list. Most people have now
heard of this server, which solves optimization
problems online.

2. The North American OpenMath Initiative
at http://www.naomi.math.ca/, with informa-
tion on a single standard for storing, trans-
mitting, and manipulating mathematical in-
formation in online scientific documents and
systems.

3. For those with access to ELECTRONIC
TRANSACTIONS ON NUMERICAL ANAL-
YSIS: etna.mcs.kent.edu/, see Volume 8, 1999,
the article “On Gershgorin-type problems and
ovals of Cassini”, by Richard S. Varga and
Alan Krautstengl. This article contains an in-
teractive supplement that allows for graphic
illustrations of Gershgorin disks and Cassini
ovals. It is hoped that our online newsletter will
have such supplements.

http://csmr.ca.sandia.gov/~meza/siagopt/news.html
http://csmr.ca.sandia.gov/~meza/siagopt/archive/vn9.pdf
http://iris.gmu.edu/~asofer/opt2002.html
http://www.fields.utoronto.ca/programs/scientific/01-02/numerical/
http://www.fields.utoronto.ca/programs/scientific/01-02/numerical/
http://www.siam.org/siags/siagopt.htm
http://www.ece.nwu.edu/OTC/
http://www.naomi.math.ca/
http://etna.mcs.kent.edu/
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4. Optimization Online has started recently:
http://www.optimization-online.org. This is a
repository for eprints (see the bulletin section
for more information).

5. The e-OPTIMIZATION.COMMUNITY at:
http://e-optimization.com, provides informa-
tion on algorithms, conferences, forum, etc...
In particular, they provide live online confer-
ences/presentations. We should participate,
provide speakers, for this.

Thanks to this issue’s Views-and-News authors -
your contributions are very much appreciated! And
to all those SIAG/OPT members who have not
contributed to the Views-and-News in recent years,
please consider writing a short expository article on
your favorite topic. Controversy is welcome. More-
over, if you would like a thematic issue, then please
make a suggestion!

Indeed, we are pleased to say that the next
Views-and-News is underway and we will have an-
other special edition with Urmila Diwaker who will
be acting as our guest editor for an issue devoted to
optimization under uncertainty.

Finally, if you haven’t already done so, check out
the Newsletter on the web. We’re trying something
new for this issue. All of the references to the web
that appear within this document can now be ac-
cessed directly by clicking on the reference. Enjoy!

Henry Wolkowicz, SIAG/OPT Chair
University of Waterloo
Department of Combinatorics and Optimizatino
Waterloo, Ontario Canada hwolkowicz@uwaterloo.ca

Juan C. Meza, Editor
Sandia National Laboratories
P.O. Box 969, MS 9217
Livermore, CA 94551
meza@ca.sandia.gov

http://www.optimization-online.org
http://e-optimization.com
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