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1. Introduction

Larry Shampine once said in a talk about ODE al-
gorithms that “the implementation of an algorithm
is more important than the algorithm itself.” This
certainly applies to a class of algorithms variously
known as continuation, invariant embedding, incre-
mental loading, homotopy, and path following. The

ideas are old, appear in topology, nonlinear real
analysis, and algebraic geometry, and except for a
few notable applications, have not been considered
mainstream numerical analysis. But good ideas tend
to be reincarnated, and many of the highly touted
concepts in interior point methods are just old ho-
motopy ideas reinvented, reimplemented, and (of
course) renamed! For many years homotopy meth-
ods for nonlinear equations were deemed a theoret-
ical curiosity rather than a practical approach, and
this belief was reinforced by horrible early computer
implementations. Shampine was dead right, though,
as current implementations of homotopy methods
are efficient and definitely competitive with other
approaches (e.g., quasi-Newton as in MINPACK).

Indeed, in many application areas (robot motion
planning, linkage mechanism design, variable geome-
try trusses, geometric surface intersection in CAD/-
CAM, magnetohydrodynamic fluid flow, heavy elas-
tica, fluid-solid interactions, analog circuit simula-
tion), homotopy methods have become the method
of choice. For finding all roots of a polynomial sys-
tem of equations, presently the only serious, produc-
tion approach is a homotopy algorithm. Successful,
nontrivial applications have occurred in nearly ev-
ery engineering discipline, in biology, computer sci-
ence, chemistry, control systems, and statistics (see
[3] for a sample of applications). The following sec-
tions discuss the supporting theory, application to
optimization, and available software.

2. Probability-one Globally Con-

vergent Homotopies

A homotopy is a continuous map from the interval
[0,1] into a function space, where the continuity is
with respect to the topology of the function space.
Intuitively, a homotopy p(A) continuously deforms
the function p(0) = g into the function p(1) = f as
A goes from 0 to 1. In this case, f and g are said



to be homotopic. Homotopy maps are fundamental
tools in topology, and provide a powerful mechanism
for defining equivalence classes of functions.

Homotopies provide a mathematical formalism
for describing an old procedure in numerical analysis,
variously known as continuation, incremental load-
ing, and embedding. The continuation procedure
for solving a nonlinear system of equations f(z) =0
starts with a (generally simpler) problem g(z) = 0
whose solution z( is known. The continuation pro-
cedure is to track the set of zeros of

p(Az) = Af(z) + (1 = ANg(z) (1)

as A is increased monotonically from 0 to 1, start-
ing at the known initial point (0,z() satisfying
p(0,z9) = 0. Each step of this tracking process
is done by starting at a point (X,%) on the zero
set of p, fixing some AX > 0, and then solving
p(A 4+ AX,z) = 0 for z using a locally convergent
iterative procedure, which requires an invertible Ja-
cobian matrix pr(S\ + A\, z). The process stops
at A = 1, since f(z) = p(1l,z) = 0 gives a zero &
of f(z). Note that continuation assumes that the
zeros of p connect the zero z( of g to a zero z of f,
and that the Jacobian matrix Dyp(A, z) is invertible
along the zero set of p; these are strong assumptions,
which are frequently not satisfied in practice.

Continuation can fail because the curve «y of zeros
of p(A, z) emanating from (0, z) may (1) have turn-
ing points, (2) bifurcate, (3) fail to exist at some A
values, or (4) wander off to infinity without reaching
A = 1. Turning points and bifurcation correspond
to singular D;p(\,z). Generalizations of continua-
tion known as homotopy methods attempt to deal
with cases (1) and (2), and allow tracking of v to
continue through singularities. In particular, con-
tinuation monotonically increases A, whereas homo-
topy methods permit A to both increase and decrease
along . Homotopy methods can also fail via cases
(3) or (4).

The map p(\, z) connects the functions g(x) and
f(x), hence the use of the word “homotopy.” In gen-
eral the homotopy map p(\, z) need not be a simple
convex combination of ¢ and f as in (1), and can
involve A nonlinearly. Sometimes A is a physical pa-
rameter in the original problem f(z;) = 0, where
A = 1 is the (nondimensionalized) value of interest,
although “artificial parameter” homotopies are gen-

erally more computationally efficient than “natural
parameter” homotopies p(A, z) = f(z;A). An exam-
ple of an artificial parameter homotopy map is

pNz) = Af (@A) + (1= MN)(z—a),  (2)

which satisfies p(0,a) = 0. The name “artificial” re-
flects the fact that solutions to p(A,xz) = 0 have no
physical interpretation for A < 1. Note that p(A, z)
in (2) has a unique zero z = a at A = 0, regardless
of the structure of f(z;\).

All four shortcomings of continuation and homo-
topy methods have been overcome by probability-
one homotopies, proposed in 1976 by Chow, Mallet-
Paret, and Yorke [2]. The supporting theory, based
on differential geometry, will be reformulated in less
technical jargon here.

Definition 1 Let U C R™ and V C RP be open
sets, and let p: U x [0,1) x V — RP be a C? map. p
is said to be transversal to zero if the px (m+1+p)
Jacobian matriz Dp has full rank on p~1(0).

The C? requirement is technical, and part of the
definition of transversality. The basis for the proba-
bility-one homotopy theory is:

Theorem 2 (Parametrized Sard’s Theorem) [2] Let
p:Ux[0,1)xV — RP be a C? map. If p is transver-
sal to zero, then for almost all a € U the map

pa(X, ) = p(a, A, z)
18 also transversal to zero.

To discuss the import of this theorem, take
U = R™,V = RP, and suppose that the C? map
p:R™ x[0,1) x RP — RP is transversal to zero. A
straightforward application of the implicit function
theorem yields that for almost all a € R™, the zero
set of p, consists of smooth, nonintersecting curves
which either (1) are closed loops lying entirely in
(0,1) x RP, (2) have both endpoints in {0} x RP,
(3) have both endpoints in {1} x RP, (4) are un-
bounded with one endpoint in either {0} x R? or in
{1} x RP, or (5) have one endpoint in {0} x R? and
the other in {1} x RP. Furthermore, for almost all
a € R™, the Jacobian matrix Dp, has full rank at
every point in p;'(0). The goal is to construct a
map p, whose zero set has an endpoint in {0} x R?,



and which rules out (2) and (4). Then (5) obtains,
and a zero curve starting at (0,z¢) is guaranteed to
reach a point (1,Z). All of this holds for almost all
a € R™, and hence with probability one [2]. Fur-
thermore, since ¢ € R™ can be almost any point
(and, indirectly, so can the starting point zp), an
algorithm based on tracking the zero curve in (5)
is legitimately called globally convergent. This dis-
cussion is summarized in the following theorem (and
illustrated in Figure 1).

Figure 1. Zero set for ps(), x) satisfying
properties (1)—(4).

Theorem 3 Let f : R? — RP be a C? map, p :
R™ x [0,1) x R? — R? a C? map, and p,(\,z) =
pla, A, z). Suppose that

(1) p is transversal to zero,
and, for each fized a € R™,

(2) pa(0,z) = 0 has a unique solution xg,

(3) pa(L,z) = f(x)  (z € RP).
Then, for almost all a € R™, there exists a zero
curve vy of p, emanating from (0,zq), along which
the Jacobian matriz Dp, has full rank. If, in addi-
tion,

(4) p31(0) is bounded,
then v reaches a point (1,z) such that f(z) = 0.
Furthermore, if Df(Z) is invertible, then v has fi-
nite arc length.

Any algorithm for tracking 7 from (0,z() to
(1,Z), based on a homotopy map satisfying the hy-
potheses of Theorem 3, is called a globally conver-
gent probability-one homotopy algorithm. Of course

the practical numerical details of tracking -y are non-
trivial, and have been the subject of twenty years
of research in numerical analysis. Production qual-
ity software called HOMPACK90 [4] exists for track-
ing . The distinctions between continuation, homo-
topy methods, and probability-one homotopy meth-
ods are subtle but worth noting. Only the latter
are provably globally convergent and (by construc-
tion) expressly avoid dealing with singularities nu-
merically, unlike continuation and homotopy meth-
ods which must explicitly handle singularities nu-
merically.

Assumptions (2) and (3) in Theorem 3 are usu-
ally achieved by the construction of p (such as (2)),
and are straightforward to verify. Although assump-
tion (1) is trivial to verify for some maps, if A and a
are involved nonlinearly in p the verification is non-
trivial. Assumption (4) is typically very hard to ver-
ify, and often is a deep result, since (1)—(4) holding
implies the ezistence of a solution to f(z) = 0.

Note that (1)—(4) are sufficient, but not neces-
sary, for the existence of a solution to f(z) = 0,
which is why homotopy maps not satisfying the hy-
potheses of Theorem 3 can still be very successful
on practical problems. If (1)-(3) hold and a solu-
tion does not exist, then (4) must fail, and nonexis-
tence is manifested by <y going off to infinity. Prop-
erties (1)—(3) are important because they guarantee
good numerical properties along the zero curve 7,
which, if bounded, results in a globally convergent
algorithm. If v is unbounded, then either the homo-
topy approach (with this particular p) has failed or
f(z) = 0 has no solution.

A few remarks about the applicability and limi-
tations of probability-one homotopy methods are in
order. They are designed to solve a single nonlinear
system of equations, not to track the solutions of a
parameterized family of nonlinear systems as that
parameter is varied. Thus drastic changes in the so-
lution behavior with respect to that (natural prob-
lem) parameter have no effect on the efficacy of the
homotopy algorithm, which is solving the problem
for a fized value of the natural parameter. In fact, it
is precisely for this case of rapidly varying solutions
that the probability-one homotopy approach is supe-
rior to classical continuation (which would be trying
to track the rapidly varying solutions with respect to
the problem parameter). Since the homotopy meth-



ods described here are not for general solution curve
tracking, they are not (directly) applicable to bifur-
cation problems.

Homotopy methods also require the nonlinear
system to be C? (twice continuously differentiable),
and this limitation cannot be relaxed. However,
requiring a finite dimensional discretization to be
smooth does not mean the solution to the infinite di-
mensional problem must also be smooth. For exam-
ple, a Galerkin formulation may produce a smooth
nonlinear system in the basis function coefficients
even though the basis functions themselves are dis-
continuous. Homotopy methods for optimization
problems may converge to a local minimum or sta-
tionary point, and in this regard are no better or
worse than other optimization algorithms. In special
cases homotopy methods can find all the solutions if
there is more than one, but in general the homotopy
algorithms are only guaranteed to find one solution.

3. Optimization Homotopies

A few typical convergence theorems for optimiza-
tion are given next (see the survey in [3] for more
examples and references). Consider first the uncon-
strained optimization problem

min f (z). 3)
Theorem 4 Let f : R® = R be a C® convex map
with a minimum at Z, ||Z|y < M. Then for almost
all a, ||a|l, < M, there ezists a zero curve vy of the
homotopy map

pa(X,x) = AV f(z) + (1 = M) (z —a),

along which the Jacobian matriz Dp,(\,z) has full
rank, emanating from (0,a) and reaching a point
(1,%), where & solves (3).

A function is called uniformly convex if it is con-
vex and its Hessian’s smallest eigenvalue is bounded
away from zero. Consider next the constrained op-
timization problem

min f(z).

>0

(4)

This is more general than it might appear because
the general convex quadratic program reduces to a
problem of the form (4).

Theorem 5 Let f : R® — R be a C® uniformly
convexr map. Then there exists § > 0 such that for
almost all a > 0 with ||lall, < & there ezists a zero
curve 7y of the homotopy map

pa(X,z) = A K(z) + (1 = N)(z - a),

Ki(z) = — 9/(z) T 3+ <8f(x)>3 + 2,

a.’L‘Z‘ ! 8:01

along which the Jacobian matriz Dpg(\,z) has full
rank, connecting (0,a) to a point (1,%), where T
solves the constrained optimization problem (4).

Given F : R™ — R", the nonlinear complemen-
tarity problem is to find a vector £ € R™ such that

(5)

It is interesting that homotopy methods can be a-
dapted to deal with nonlinear inequality constraints
and combinatorial conditions as in (5). Define G :
R"” — R" by

’nﬁ

Gi(2) = —|Fy(z) —z + (Fi(2))* + 23, i=1,...
and let

pPa(A,z2) =AG(2) + (1 — AN)(z —a).
Theorem 6 Let F : R — R" be a C? map, and let
the Jacobian matrizx DG(z) be nonsingular at every
zero of G(z). Suppose there ezists v > 0 such that
z >0 and zp = ||z||, > r imply F(z) > 0. Then
for almost all a > 0 there exists a zero curve v of
pa(A, 2), along which the Jacobian matriz Dpg(X, 2)
has full rank, having finite arc length and connecting
(0,a) to (1,%), where zZ solves (5).

Theorem 7 Let F : R® — R be a C? map, and
let the Jacobian matriz DG(z) be nonsingular at ev-
ery zero of G(z). Suppose there exists r > 0 such
that z > 0 and ||z||,, > T imply zxFi(z) > 0 for
some index k. Then there exists § > 0 such that for
almost all a > 0 with |jal|,, < 0 there ezists a zero
curve 7y of pa(A, z), along which the Jacobian matriz
Dpy (N, z) has full rank, having finite arc length and
connecting (0,a) to (1,Z), where Z solves (5).



Homotopy algorithms for convex unconstrained
optimization are generally not computationally com-
petitive with other approaches. For constrained op-
timization the homotopy approach offers some ad-
vantages, and, especially for the nonlinear comple-
mentarity problem, is competitive with and often su-
perior to other algorithms. Consider next the gen-
eral nonlinear programming problem

min 0(x)
subject to  g(z) <0, (6)
h(z) =0,

where z € R", @ is real valued, g is an m-
dimensional vector, and h is a p-dimensional vector.
Assume that 6, g, and h are C2. The Kuhn- Tucker
necessary optimality conditions for (6) are

Vo(z) + BVh(z) + ' Vg(z)
(z
(

bl

h(z) ;
g(z)
I
u'g(z)
where 8 € RP and g € R™. The complemen-
tarity conditions u > 0, g(z) < 0, plg(z) = 0 are
replaced by the equivalent nonlinear system of equa-
tions

—_~
~
N

8
IV IA

7

0
0
0
0
0

?

W(z,u) =0, (8a)

where
Wiz, ) = —|mi + g:(@)° + pf = (9:(2))°,  (8)
i=1,...,m. (9)
(10)

Thus the optimality conditions (7) take the form

[VO(z) + BVh(z) + ptVg(z)]’
F(z,B,p) = ( h(z) ) =0.
W(z,p)
(9)

With z = (z, 8, p), the proposed homotopy map is
pa(X,z) =AF(z) + (1= A)(z —a),  (10)

where a € R™™*™_ Simple conditions on 8, g,
and h guaranteeing that the above homotopy map

pa(A, z) will work are unknown, although this map
has worked very well on some difficult realistic engi-
neering problems.

Frequently in practice the functions 6, g, and h
involve a parameter vector ¢, and a solution to (6) is
known for some ¢ = ¢{9. Suppose that the problem
under consideration has parameter vector ¢ = ¢().
Then

c=(1-X)c® 4 AW (11)

parametrizes ¢ by A and 6 = 0(z;¢c) = 6(z;¢(N)),
g = g(z;¢(N), h = h(z;c())). The optimality
conditions in (9) become functions of A\ as well,
F(/\,-'E,,B,lll) = Oa and
Pa(A2) = AF(A 2) + (1 = M) (2 —a) (12)
is a highly implicit nonlinear function of A. If
F(0,29) = 0, a good choice for a in practice has
been found to be a = 2(9. A natural choice for a
homotopy would be simply
F(\z) =0, (13)
since the solution z(®) to F(0,z) = 0 (the problem
corresponding to ¢ = c(o)) is known. However, for

various technical reasons, (12) is much better than
(13).

4. Software

There are several software packages implementing
both continuous and simplicial homotopy methods;
see [1] and [4] for a discussion of some of these
packages. A production quality software package
written in Fortran 90 is described here. HOM-
PACKY0 [4] is a Fortran 90 collection of codes for
finding zeros or fixed points of nonlinear systems us-
ing globally convergent probability-one homotopy al-
gorithms. Three qualitatively different algorithms—
ordinary differential equation based, normal flow,
quasi-Newton augmented Jacobian matrix—are pro-
vided for tracking homotopy zero curves, as well as
separate routines for dense and sparse Jacobian ma-
trices. A high level driver for the special case of poly-
nomial systems is also provided. HOMPACK90 fea-
tures elegant interfaces, use of modules, support for
several sparse matrix data structures, and modern



z = f(z) F(z)=0 pla,\,z) =0 algorithm
dense sparse dense sparse dense sparse
FIXPDF | FIXPDS | FIXPDF | FIXPDS | FIXPDF | FIXPDS | ordinary differential equation
FIXPNF | FIXPNS | FIXPNF | FIXPNS | FIXPNF | FIXPNS normal flow
FIXPQF | FIXPQS | FIXPQF | FIXPQS | FIXPQF | FIXPQS | augmented Jacobian matrix

Table 1: Taxonomy of homotopy subroutines.

iterative algorithms for large sparse Jacobian matri-
ces.

HOMPACK90 is logically organized in two dif-
ferent ways: by algorithm/problem type and by sub-
routine level. There are three levels of subroutines.
The top level consists of drivers, one for each prob-
lem type and algorithm type. The second subroutine
level implements the major components of the algo-
rithms such as stepping along the homotopy zero
curve, computing tangents, and the end game for
the solution at A = 1. The third subroutine level
handles high level numerical linear algebra such as
QR factorization, and includes some LAPACK and
BLAS routines. The organization of HOMPACK90
by algorithm/problem type is shown in Table 1,
which lists the driver name for each algorithm and
problem type.

The naming convention is

D
rxe{ b},

Q
where D = ordinary differential equation algorithm,
N = normal flow algorithm, ) = quasi-Newton
augmented Jacobian matrix algorithm, F' = dense
Jacobian matrix, and S &~ sparse Jacobian matrix.
Depending on the problem type and the driver cho-
sen, the user must write exactly two subroutines,
whose interfaces are specified in the module HOMO-
TOPY, defining the problem (f or p). The module
REAL_PRECISION specifies the real numeric model
with

SELECTED_REAL_KIND(13),

which will result in 64-bit real arithmetic on a Cray,
DEC VAX, and IEEE 754 Standard compliant hard-
ware.

The special purpose polynomial system solver
POLSYS1H can find all solutions in complex projec-
tive space of a polynomial system of equations. Since

a polynomial programming problem (where the ob-
jective function, inequality constraints, and equal-
ity constraints are all in terms of polynomials) can
be formulated as a polynomial system of equations,
POLSYS1H can effectively find the global optimum
of a polynomial program. However, polynomial sys-
tems can have a huge number of solutions, so this
approach is only practical for small polynomial pro-
grams (e.g., surface intersection problems that arise
in CAD/CAM modelling).

The organization of the Fortran 90 code into
modules gives an object oriented flavor to the pack-
age. For instance, all of the drivers are encapsulated
in a single MODULE HOMPACK90. The user’s call-
ing program would then simply contain a statement
like

USE HOMPACK90, ONLY : FIXPNF

Many scientific programmers prefer the re-
verse call paradigm, whereby a subroutine returns
to the calling program whenever the subroutine
needs certain information (e.g., a function value)
or a certain operation performed (e.g., a matrix-
vector multiply). Two reverse call subroutines
(STEPNX, ROOTNX) are provided for “expert”
users. STEPNX is an expert reverse call stepping
routine for tracking a homotopy zero curve 7 that
returns to the caller for all linear algebra, all func-
tion and derivative values, and can deal gracefully
with situations such as the function being undefined
at the requested steplength.

ROOTNX provides an expert reverse call end
game routine that finds a point on the zero curve
where g(), z) = 0, as opposed to just the point where
A =1. Thus ROOTNX can find turning points, bi-
furcation points, and other “special” points along
the zero curve. The combination of STEPNX and
ROOTNX provide considerable flexibility for an ex-
pert user.
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1. Introduction

In the SIAG/OPT Views-and-News Volume 10 Nr.
1, a paper is presented [2] concerning the problem
to determine whether a receiving device is within
a polygon, the coordinates of which are transmit-
ted as a radio signal to the receiver. If the receiver
is within the polygon, it rises a signal, otherwise it
keeps silent. In order to determine whether it is in
the polygon or not, it is able to use integer arith-
metic only. It is assumed that all vertex values, as
well as the position of the receiver, lie on an integer
grid.

In [2] it is proposed to solve this problem by
translating it into a linear program. This program
is solved using the revised simplex method, that is

refined in a beautiful way as to use only integer arith-
metic. It is concluded in [2] that the method works
well for small problems, where the polygon has less
than 10 vertices, but is impractical for large prob-
lems.

At first sight, the article demonstrates a very nice
example of the wide applicability and flexibility of
mathematical optimization. On the other hand, the
problem of determining whether or not a point is in a
given polygon is not new. The problem and various
extensions of it are well known in for example com-
putational geometry [1]. We encountered the same
problem a few years ago in another different context.
We were given a database containing all zip code ar-
eas of a certain country, described by their vertices.
Given this database and a point b, we had to answer
the question: ’is b in zip code area g?’. We devel-
oped an algorithm based on common sense, that is
conceptually simpler than a linear optimization al-
gorithm and computationally much more efficient.
Although it is not an optimization algorithm, we like
to present it here, in order to prevent the situation
in which OR people demonstrate the linear program
as an advertisement of their discipline, while the lis-
teners from computer science have a much faster and
simpler solution. This holds especially since papers
that appeared in STAG/OPT Views-and-news are es-
pecially likely to be used for OR advertisement.

Let us introduce some notation. The polygon
is described by the vertices z',...,2". The location
under test is b = (b1, b2). Our method requires the
additional assumption that the vertices ', ..., z" are
given in the right order, i.e. z* and z'! are adjacent,
and z" is adjacent to z!. This additional assumption
is necessary since we may deal with arbitrary, not
necessarily convex polygons. The method is based
on a common sense statement, that for topology spe-
cialists may be derived by the Jordan Curve Theo-
rem [3]. It needs a point p that is outside the poly-
gon. Given this point, the number of intersections
is counted between the line b-p and the boundary of
the polygon. If this number is odd, then b is inside
the polygon, otherwise it is outside.

Counting the number of boundary crossings re-
duces to checking whether line segment z* — z*!
crosses line segment b — p, for i = 1,...,n, where
z"t! = 2. A crossing only occurs if z* and z**! are
on opposite sides of the line through b and p, and



Figure 1: The algorithm also works for this nonconvex polygon, that we actually encountered in our zip
code database as the periphere region around a city centre.

simultaneously b and p are on opposite sides of the
line through z* and z'*!. Define the 2 x 2 matrices
A and B;:

A=(bp), B=(z'z'), i=1,...n.
Further define e = (1 1)7 and

o = sgn(eladj(A)z® — det(A))
Bi = sgn(e”adj(Bi)b— det(B;))
v = sgn(e’adj(Bi)p — det(B;))

Note that ¢; is plus or minus 1 depending on whether
z' is on the left or the right side of the line through
b and p, or zero if z* is exactly on the line. Similar
interpretations hold for 8; and =;. Neglecting the
possibility that a point is exactly on the other line,
the basic algorithm now reads as follows.

1. ¢ =0 {the crossings counter};
2. p1 = max(z}) + 1; po = max(zh) + 1;
2 2

3. Fori=1tondo
If a; # ;41 and f; # y; then
c=c+1;

4. b is inside the polygon if and only if ¢ is odd.

The algorithm requires at most 3n computations of
a’s, B’s and v’s. This includes the computation of
at most n + 1 determinants and adjugates of 2 x 2
matrices, which is perfectly and efficiently possible
using integer arithmetic.

The program logic is slightly complicated by con-
sidering the case that one or more «’s or ’s are zero.
If for some ¢ B; = 0 then b is on the boundary of the
polygon. In that case we can immediately stop the
algorithm. If one or more s are zero (i.e., z* is on
the line through b and p) nasty things can happen
and a complicated if-structure is needed to cover all

cases. But since all points are on an integer grid this
case is easily avoided by choosing p as follows:

b1 +1
by 4+ max |by — %] + 1
3

P =
p2 =

This p is outside the polygon since ps > x’Q for all
i, and a; = 0 only if 2* is b. The latter case is al-
ready covered by the check for zero 's. The total
algorithm is listed below, where o's, 8's and v's are
computed as needed.

1. If min|B;| = 0 then STOP: b is on the bound-
2
ary;

2. ¢ =0 {the crossings counter};
3. p1 = b1+ 15 pp = by + max by — zh| + 1;
2

4. Fori=1ton do
If o # @41 and f; # y; then
c=c+1;

5. b is inside the polygon if and only if ¢ is odd.

The linear time algorithm works also fine for any
—possibly nonconvex— polygon, even for a ring like
in Figure 1, requires only integer arithmetic, and is
very fast.
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The Quist et al paper uses a line crossing ap-
proach to solve the problem. It is interesting in that
it treats non-convex regions just as effectively as con-
vex ones. I believe the assumption that the points
are given in order could be a drawback in the appli-
cation, since in general the emergency broadcaster
has to generate the points under duress and very
quickly. Furthermore, in practice, the operator has
to extend the region by adding points to the con-
vex hull as the emergency develops. It is easy for
the receivers to deal with extra points in the linear
programming approach, whereas a new set of points
would have to be generated using the line crossing
approach.

Finally, the notion of efficiency. Typically, linear
programs require a number of pivots that is some
small multiple of the number of rows. In our case, 5
or 6 pivots typically suffice. The computational cost
of each pivot is the calculation of a 3 by 3 adjugate,
a 3 by 3 determinant and 3n + 39 multiplications.
Thus in practice time is negligible for the linear pro-
gramming approach.
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