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1. Introduction

The application considered in this article arises
within �nance and concerns approximation of a for-

ward rate curve, given a set of bond prices. The

simplest bond is a zero-coupon bond for which a
given payment is obtained at a given time. This sin-
gle payment may be normalized so that it is a unit
payment. Consequently, for a given set of m zero-
coupon bonds, it is known that bond i, i = 1; : : : ;m,
gives unit value at time ti, and in addition its market
price at time zero, vi, is known. Here, and through-
out this article, the current time is set to zero and
denoted by t0. For a more general discussion, see,
e.g., Bj�ork [3, Chapter 15]. Without loss of gener-
ality, we assume that 0 = t0 < t1 < � � � < tm. The
purpose of the application is to extend these mar-
ket prices to a smooth curve v(t) which is consistent
with the information that is known, i.e., v(t0) = 1
and v(ti) = vi, i = 1; : : : ;m. Rather than work-
ing on v(t), the instantaneous forward rate f(t) is
chosen. The instantaneous forward rate f(t) is the
riskless interest rate that can be obtained over an in-
�nitesimal interval at time t for a decision made at
time t0. (See, e.g., Bj�ork [3, Chapter 15] for a more
precise de�nition.) This means that for t 2 [t0; tm],
the relationship between v(t) and the function f is
given by

v(t) = e
�

R t
t0

f(s)ds
; (1)

or equivalently

f(t) = �
d

dt
ln v(t):

Since both f and v are unknown functions, the ques-
tion is what functions are suitable as choices for f
and v. One way of making such a choice is described
below.

The background to the current article is that
the author was approached by a Swedish company,
Algorithmica Research AB, who wanted to utilize
a certain model for approximation of forward rate
curves, and implement this model in a tool to be
used by �nancial analysts. The model is described
in Section 2., the resulting optimization problem is

1Research supported by the Swedish Natural Science Research Council (NFR).
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described in Section 3., and �nally the resulting so-
lution approach is discussed in Section 4.. This ar-
ticle gives a summary of Forsgren [4], where a more
thorough discussion of the mathematical aspects is
given.

2. Model

The chosen model, proposed by Adams and van De-
venter [1], suggests a choice of f that gives \maxi-
mum smoothness" in the sense that the f that has
minimal L2-norm of its second-derivative over the
planning horizon is chosen. This means that the ob-
jective is to minimize

Z tm

t0

(f 00(s))2ds:

where it is required that f is continuously dif-
ferentiable on the whole interval (t0; tm) and �ve
times continuously di�erentiable on each subinter-
val (ti�1; ti), i = 1; : : : ;m. Consistency with the
market price vi of bond i, for i = 1; : : : ;m, gives the
requirement

vi = e
�

R ti
t0

f(s)ds
; i = 1; : : : ;m;

utilizing (1). Equivalently, this may be written as

� ln
vi

vi�1
=

Z ti

ti�1

f(s)ds; i = 1; : : : ;m;

with v0 = 1.
In addition, an extension suggested by Bjerksund

and Stensland [2] is included, in which it is assumed
that there are more general bonds such that, for each
bond j, j = 1; : : : ; n, today's bid price pj and today's
ask price �pj is known, in addition to the payments
p
j
i at times ti, i 2 Ij , where Ij denotes the set of
points of time where payments are made for bond
j. The consistency requirement on vi, i = 1; : : : ;m,
then becomes

pj �
X
i2Ij

p
j
ivi � �pj; j = 1; : : : ; n:

For a more general discussion on modeling as-
pects, see, e.g., Adams and van Deventer [1],
Bjerksund and Stensland [2], Frishling and Yama-
mura [6], Tanggaard [8], and the references given
in these papers.

3. Optimization problem

The optimization problem resulting from the model
described in Section 2. takes the form

minimize
f2C1[t0;tm]

v2IRm

Z tm

t0

(f 00(s))2ds

subject to

Z ti

ti�1

f(s)ds = � ln
vi

vi�1
; i = 1; : : : ;m;

v0 = 1;

pj �
mX
i=1

p
j
ivi � �pj ; j = 1; : : : ; n;

f 2 C5(ti�1; ti); i = 1; : : : ;m;

wherem denotes the number of points of time where
payments are made and n denotes the number of
bonds, see Bjerksund and Stensland [2]. (Additional
constraints that may be included, such as f(t0) being
set to a known value, are omitted from the discussion
here.)

Results on natural splines, see e.g., Schwarz [7,
pp. 126{128], can be used to characterize the opti-
mal f as a piecewise quadratic polynomial, which
is three times continuously di�erentiable on [t0; tm].
For details, see Adams and van Deventer [1]2, Bjerk-
sund and Stensland [2] or Forsgren [4]. This means
that f may be modeled by piecewise quadratic poly-
nomials, and that the unknowns are the coe�cients
in the polynomials.

If all bonds are zero-coupon bonds, i.e., m = n,
and in addition the simpler model is used where ask
price and bid price are set equal, then the values
of vi, i = 1; : : : ;m, are uniquely determined. In
this situation, the optimization problem is a convex
equality-constrained quadratic-programming prob-
lem with 5m variables, the coe�cients in the poly-
nomials. An alternative to solving the optimality
conditions of this quadratic-programming problem
is to use the characterization of the natural splines,
see the discussion in Forsgren [4].

If m > n, then the values of vi are not uniquely
determined, and the problem becomes nonlinearly
constrained and in general nonconvex. Also in this
situation, �rst-order optimality conditions can either
be given by the \traditional" Karush-Kuhn-Tucker
optimality conditions or by natural splines, see Fors-
gren [4].

2Corrections on the shape of the polynomials are given in van Deventer and Imai [9, Chapter 2].
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4. Solution method

As discussed in Section 2., if all bonds are zero-
coupon bonds, and in addition the ask price and
bid price are set equal, then the resulting problem
is a convex equality-constrained quadratic program
whose solution can be obtained by solving the linear
system of equations that the KKT-conditions form.
Initial experiments con�rmed that also if more gen-
eral bonds were treated, but the ask price and bid
price were set equal, the problem could be solved by
a low number of Newton iterations on the �rst-order
optimality conditions.

These �ndings led to an approach for solving
the inequality-constrained problem, where an ini-
tial interior point was created by applying Newton's
method to the �rst-order optimality conditions of
the equality-constrained problem that results when
the value of each bond is set to the mean value of its
ask price and its bid price. Consequently, this initial
problem takes the form

minimize
f2C1[t0;tm]

v2IRm

Z tm

t0

(f 00(s))2ds

subject to

Z ti

ti�1

f(s)ds = � ln
vi

vi�1
; i = 1; : : : ;m;

v0 = 1;
mX
i=1

p
j
ivi =

1
2(p

j + �pj); j = 1; : : : ; n;

f 2 C5(ti�1; ti); i = 1; : : : ;m:

Then a primal-dual interior method was applied to
the solution of the original problem with this inte-
rior point as initial point. The primal-dual nonlinear
equations were solved by Newton's method, see, e.g.,
Forsgren and Gill [5, Chapter 2.3]. The initial point
which was created this way was found to be a good
starting point, and rapid convergence was obtained.
Based on these observations, although the problem
may be nonconvex in general, no speci�c device was
used to take care of nonconvexities, but the norm of
the residual of the primal-dual equations was used
as a merit function.

The implementation which was made by Algo-
rithmica Research AB was written in C and C++.
The heart of the computational e�ort was the so-
lution of the Newton equations, which was car-
ried out using a sparse matrix factorization routine.
The linear equations that were solved this way be-

came highly ill-conditioned as the solution was ap-
proached. This, however, did not seem to harm the
convergence and acceptable response times were ob-
tained. For the Swedish market, which the company
had in mind, a typical problem size would be m ap-
proximately 60 and n approximately 20.
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1. Introduction

Optimization principles underpin much of computa-
tional �nance. Historically this has been particularly
true in the area known as portfolio analysis - the se-
lection and modi�cation of a collection of �nancial
instruments such as stocks, bonds, and options. In-
deed, Harry Markowitz was a co-recipient of the 1990
Nobel Prize in economics in recognition of his work
involving novel application of optimization concepts
to portfolio analysis.

The 1997 Nobel Prize in economics was won by
Robert Merton and Myron Scholes for their role in
the discovery and development of the most famous
equation in �nance, the Black-Scholes (B-S) equa-
tion [2, 13]. This work has, at �rst blush, little to
do with optimization. Instead, it rests on notions
from stochastic calculus, di�erential equations, and
�nance `arbitrage' principles. However, it should be
noted that application of the Black-Scholes equa-
tion (and, more interestingly, a generalized version)
requires knowledge of a mysterious parameter, the
volatility. This is where numerical optimization can
help.

In this article we discuss the (generalized) Black-
Scholes equation and show how inverse optimization
problems can be formulated to yield smooth volatil-
ity surfaces. The latter is useful both in the accurate
pricing of exotic options as well as computing sensi-
tivities.

2. The Black-Scholes (B-S) Equa-
tion

The B-S equation is the cornerstone of options pric-
ing. Its' derivation is thoroughly covered in many
introductory books on mathematical �nance, e.g.,
[9, 10, 15]. Here we give a terse discussion: our ob-
jective is to quickly move to our main concern, the
question of volatility and its computation via inverse
optimization.

What is an option? An option is an example of a
�nancial derivative. A �nancial derivative is a �nan-
cial instrument that derives its value from another,
i.e., from an underlying, such as a stock. The most
basic option is the European vanilla option (some-
times just called a European option). The buyer
of a European put option agrees to consider selling
a share of the underlying at a predetermined strike
priceK and expiration time T . At time T this buyer
has the option of exercising, i.e., selling the share at
price K, or not. Typically the owner will sell if the
current stock price is below K and will bypass the
opportunity otherwise. A European call option is
symmetric to the put option: the call option buyer
agrees to consider buying a share of the underlying
at time T at an agreed on strike price K. Having
purchased the option for some amount of money, the
buyer will typically exercise the option, i.e., purchase
the share of the underying at price K and time T ,
if the current stock price at time T is greater than
K. Otherwise, the option buyer will forego the op-
portunity.

Ignoring the cost of purchasing the option, the
payo� on the put option is P = K � S(T ), if
K > S(T ), and P = 0 otherwise (assuming that in
the latter case the option is not exercised). More
compactly, the payo� is P = max(K � S(T ); 0).
Analogously, the buyer of a call option obtains a
payo� of P = max(S(T )�K; 0).

The vanilla European options are the simplest
of the options. Many more complex options (often
called exotic options) are also traded - we will con-
sider only the vanilla European option in this article.
One of the most important questions in �nance is,
what is a fair price of an option? The answer, under

1This expository article is targetted to a reader familiar with numerical optimization; little mathematical �nance back-
ground is required. It can serve as an introduction to some of the basic ideas in options pricing as well as an illustration of an
interesting application of numerical optimization.
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common assumptions, is given by the B-S equation.
The challenge in pricing an option is that the

underlying behaves in a stochastic way. The power
of the B-S analysis is this: with a few assumptions
about the behaviour of the underlying, and a knowl-
edge of the standard deviation of the returns (or
volatility), there is a rigorous and computable con-
cept of a fair price. Moreover, this fair price is
unique: under these same assumptions, an option
that is priced di�erently from the B-S price is mis-
priced in that it will allow a trader to have a `free
lunch', i.e., make an immediate pro�t without risk.
This is known as arbitrage, a condition which is typ-
ically assumed to be nonexistent2 when developing
a pricing model.

One of the basic assumptions behind the Black-
Scholes model is that the behaviour of the underlying
S follows geometric Brownian motion,

dSt

St
= �dt+ �dWt; (2)

where the left-hand-side is an instantaneous relative
change in the underlying (e.g., the stock value), � is
known as the `drift' term (average rate of growth of
the stock value) and �dt is the predictable compo-
nent of the relative change in the stock price. The
second term on the right-hand-side, �dWt, corre-
sponds to the random behaviour of the stock: � is
known as the volatility of the stock (volatility is the
standard deviation, or square-root of the variance,
of the returns of the underlying) and dWt is random
variable drawn from a normal distribution (the mean
of dWt is zero, the variance is dt).

Equation (2) has proven to be a very useful model
of stock behaviour. Nevertheless, even with `opti-
mal' choices of � and �, it does not always capture
reality. We discuss a generalization to overcome this
gap in x2.

The question we are now faced with is how to
value on option de�ned on an underlying S, e.g.,
stock, whose growth follows (2). The answer, under
a number of assumptions including the no-arbitrage
assumption mentioned above, satis�es the Black-
Scholes partial di�erential equation:

@V

@t
+

1

2
�2s2

@2V

@s2
+ rs

@V

@s
� rV = 0; (3)

where V is the value of the option (i.e., that which
we are trying to determine), r is the risk-free inter-
est rate. Detailed derivation of (3) is given in most
texts on mathematical �nance, e.g., [9, 10, 15].

Interestingly, the drift term � does not appear in
equation (3). Consequently, knowledge of � is not
required to evaluate V . (This is known as risk neu-
tral valuation.) However, additional information is
required before (3) can be of practical value. In par-
ticular, boundary conditions are needed and a value
for �, the volatility, is required.

First, the boundary conditions: For both the
European put and call options there are standard
boundary conditions. For example, for the European
call typical boundary conditions are:

lims!+1
@V (s;t)

@s
= e�(T�t); t 2 [0; T ]

V (0; t) = 0; t 2 [0; T ]
V (s; T ) = max(s�K; 0);

where T is the time to maturity, K is the strike price.
The determination of volatility, �, is the more inter-
esting question. The methods for determining � fall
into two categories. First, � can be estimated from
�rst principles, i.e., based on the de�nition of stan-
dard deviation of the returns and using historical
data. Typically this leads to 1-dimensional regres-
sion problem, e.g., [9, 15].

This �rst principles approach is easy to imple-
ment but has several unpleasant aspects. For exam-
ple, there is the question of how far back in time to
go and how the data should best be weighted. In
addition, it is disconcerting that the regression solu-
tion for � does not usually yield the actual price for
any known traded option.

A second, more common approach, is calculation
of implied volatility (implied vol) to yield a value for
� . Implied volatility is determined by solving a sim-
ple 1-dimensional inverse problem involving a similar
traded option (with known price) on the same un-
derlying. Implied volatility is thus that value of �
that, when substituted into equation (3) along with
appropriate boundary conditions, yields the known
price of the corresponding option. Thus for each

2In practise arbitrage opportunities do arise but typically disappear quickly due to the operation of opportunistic arbi-
trageurs.
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traded option there is a corresponding implied vol,
and one such value can be used to determine the fair
price of a new option on the same underlying.

Use of implied vol is very common in the trading
world. Indeed, implied vol is often `quoted' instead
of option prices. Every �nancial engineering software
package includes an implied vol computation. For
example, in the MATLAB Financial Toolbox [12],
a Black-Scholes implied volatility computation for a
European call option is invoked by

� = blsimpv(sc,K,r,T, call)

where sc is the current price of the underlying, K
is the strike price, r is the risk free interest rate, T
is the time to maturity, and call is the value (or
price) of the call option under consideration. Func-
tion blsimpv uses Newton's method.

Despite the popularity of the implied volatility
concept, there are problems. In particular, it is un-
satisfying that �, in the derivation of (3) yields dif-
ferent values of � for di�erent options on the same
underlying. An ensuing di�culty is, given several
di�ering implied vol computations on the same un-
derlying, how to choose a value for � to price an
exotic option on the same underlying. A more per-
nicious problem has to do with hedging. We refer the
reader to basic books on �nance, e.g., [9, 10, 15], for
discussions of hedging strategies. Here it su�ces to
say that hedging involves computing the sensitivity
of V with respect to di�erent parameters. The choice
of � can greatly a�ect the derivative (and thus the
hedging strategy) and so an arbitrary choice from a
set of `implied vols' can be misleading. Moreover,
there is much evidence to indicate that � varies with
time and/or strike price (e.g., [5, 7, 8]): this sug-
gests � is better thought of as a function of (s; t),
i.e., � = �(s; t). A framework for this approach is
discussed in x2.

Given the boundary conditions, there are several
common ways to solve the B-S equation (3). First,
with the aid of a look-up table to evaluate the nor-
mal cumulative distribution function, an explicit for-
mula is available to determine the B-S value at an
arbitrary stock value S. This is obviously very useful
but su�ers from the disadvantage that this approach
does not generalize - most other types of options do
not enjoy explicit solutions. Second, there are tree
or lattice evaluators - these are commonly described
in most introductory �nance books. Such methods

are easy to implement and do generalize to more
complicated options. In fact, such methods can be
viewed as explicit numerical approaches to the so-
lution of (3). On the downside, explicit approaches
can su�er from stability problems and can be costly
(in an attempt to overcome the stability problems).
Third, implicit PDE methods can be employed to
solve (1.2). This approach also generalizes to more
complex options, e.g., [14], but poses a problem for
general path-dependent options. Finally, we remark
that Monte-Carlo methods are heavily used to eval-
uate more complex options, especially where there
is path-dependency. Monte-Carlo mthods are di�-
cult to adapt to American-style options (i.e., options
that allow the owner to exericise at any time before
maturity).

3. Generalized Black-Scholes

A reasonable and realistic alternative is to think of
the volatility as a surface, � = �(s; t), rather than
a constant. In particular, a more general model of
the evolution of the stock price, replacing (3), is the
1-factor continuous di�usion approach:

dSt

St
= �(St; t)dt+ �(St; t)dWt; (4)

where both � = �(s; t) and � = �(s; t) are continu-
ous di�erentiable functions of the underlying s and
t. Note that St is a stochastic variable and Wt is
standard Brownian motion. The value of a Euro-
pean option where the underlying is de�ned by (4)
satis�es the generalized Black-Scholes equation [13]:

@V

@t
+

1

2
�(s; t)2s2

@2V

@s2
+ rs

@V

@s
� rV = 0: (5)

Unlike the standard Black-Scholes equation, (5)
does not enjoy an explicit solution; however, a dis-
cretized PDE approach can be used provided the
surface �(s; t) is available for evaluation at all the
grid points. Equation (5) obviously represents a po-
tentially more powerful approach than the standard
B-S equation which requires volatility to be a single
number. But we are left with the question: how can
the volatility surface be obtained?

Similar to the scalar case, an inverse (implied)
point of view can be invoked. This approach uses
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current (or very recent) data, i.e., prices on recently
traded options on the underlying of question. A
straightforward implementation to this inverse prob-
lem, assuming model (5), yields a large-scale opti-
mization problem.

To see this suppose we have m data triplets,
(�vj ; Tj ;Kj), corresponding to recently traded op-
tions on the same underlying: the option price is
�vj , Tj is the time to maturity, and Kj is the strike
price. Discretize s and t consistent with the numer-
ical procedure to solve (5), to yield an M -vector s
and N -vector t. Surface �(s; t) is thus represented
as an M -by-N matrix � (of unknowns). We are
now faced with a vastly underdetermined problem,
in general, since the number of data points, m, sat-
is�es m << M � N . (A typical value is m = 20
or m = 30 wheras the product M � N could easily
be 100; 000 or more). To take up the slack, and in-
troduce smoothness into �, Osher and Lagnado [11]
propose minimization over �(s; t), � after discretiza-
tion, of the function

mX
j=1

(vj(�(s; t))) � �vj)
2 + �kr�(s; t)k2; (6)

where � is a positive constant and k � k2 denotes the
L2 norm.

A di�culty with this approach, in addition to
the delicate choice of the parameter �, is the com-
putational challenge. Problem (6) is a very large
optimization problem (M � N variables �). More-
over, the �rst term in (6) is very nonlinear and dense
- density is due to the evaluation of the discretized
aproximation of the PDE in (5) which depends on
the entire surface �(s; t), i.e., each point of the ma-
trix � is involved in the evaluation of (5) for each
j, j = 1; � � � ;m.) Indeed, in light of the extreme
computational expense, Osher and Lagnado com-
pute only very approximate solutions to (6) using
a steepest descent procedure. Unfortunately, ap-
proximate solutions yield rough surfaces �. Rough
volatility surfaces can cause severe pricing and hedg-
ing problems. An alternative approach [3] yields a
smaller more tractable optimization problem. The
solution � is smooth. The essential idea is to build
in smoothness from the start: assume �(s; t) is a
bi-cubic spline, e.g., [1, 6], de�ned on p � m

knots. The knots are located in a regular way comen-
surate with the known data. In more detail, let

the number of spline knots be p � m. Choose a
set of �xed spline knots f(�sj ; �tj)g

p
j=1. Given the

spline knots with corresponding local volatility val-

ues ��i
def
= �(�si; �ti), an interpolating cubic spline

c(s; t) with a �xed end condition (e.g., the natu-
ral spline end condition) is uniquely de�ned by set-
ting c(�si; �ti) = ��i; i = 1; � � � ; p. The freedom in
this problem is represented by the volatility values
f��ig at the given knots f(�si; �ti)g. If �� is a p-vector,
�� = (��1; � � � ; ��p)

T , then we denote the corresponding
interpolating spline with the speci�ed end condition
as c(s; t; ��). For j = 1; � � � ;m, let

vj(c(s; t; ��))
def
= v(c(s; t; ��);Kj ; Tj):

To allow the possibility of incorporating additional
a priori information, l and u are lower and upper
bounds that can be imposed on the local volatilities
at the knots. Thus, we de�ne the inverse spline lo-

cal volatility approximation problem: Given p spline
knots, (�s1; �t1) � � � ; (�sp; �tp), solve for the p-vector ��

min
��2IRp

f(��)
def
= 1

2

mX
j=1

[vj(c(s; t; ��))� �vj ]
2 (7)

subject to l � �� � u: (8)

Note that (7) is a small optimization problem,
typically with m = p � 20 variables, the solution
has certain guaranteed smoothness properties (due
to the use of the bi-cubic spline model), and, the
given data will be usually be satis�ed provided it is
consistent.

4. Concluding Remarks

The volatility surface produced by the bi-cubic spline
optimization approach discussed above is visually
smooth in the area of interest [3]. Indeed, given
the location of the knots it can be argued that the
computed surface � is the smoothest surface consis-
tent with the (discretized) model (5) and the given
data. However, the real test of any volatility surface
computation, in addition to its computational at-
tractiveness, is its useability vis-�a-vis pricing and, es-
pecially, hedging with the generalized Black-Scholes
model (5). Hedging involves computing the sensitiv-
ity of the option price with respect to di�erent pa-
rameters. Experiments are currently in progress to
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determine the impact of using the bi-cubic surface
representation for volatility in this context. (E�-
cient implementation of some sensitivity calculations
involves applying either automatic di�erentiation or
�nite-di�erencing in a structured way [3, 4]).

We conclude with two remarks. First, while
the bi-cubic spline optimization approach appears
to produce a smooth, attractive, and useful volatil-
ity surface in the usual area of interest - in an
(s; t)�region around known strike and expiration
times for current option data - the volatility surface
becomes less reliable outside of this region. This
is usually not a problem but can be troublesome
when pricing (or hedging with) long-dated options.
This is an active area of investigation. Second, we
expect that the bi-cubic optimization approach to
this volatility surface problem can be applied to
other inverse problems involving nonlinear, under-
determined systems.
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Valuation in Complete Markets:
The Optimization Approach

Andrew Aziz

Algorithmics, Inc.

An optimization approach to valuation
in complete markets that is based on
a fundamental assumption of investor
behaviour - that investors prefer more
wealth to less. In market equilibrium,
this single assumption is su�cient for
valuation in an optimization framework.

Valuation methodologies in �nance typically incor-
porate two fundamental assumptions of investor be-
haviour. The �rst is that investors prefer more
wealth to less, and will take actions to maximize
their wealth. The second is that investors have a
distaste for risk and that distaste will lead them to
modify their actions and make trade-o�s between
expected wealth and uncertainty of wealth.
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The \preference of more to less" assumption is
analytically quite tractable. It is intuitively very ap-
pealing and the notion of wealth maximization can
be well de�ned quantitatively. In contrast, the \dis-
taste of risk" assumption is much less tractable. It
is somewhat less intuitively appealing and the no-
tion of risk aversion can neither be well de�ned nor
measured in a straightforward manner. As a con-
sequence, valuation methodologies that are able to
rely solely on the �rst assumption are typically much
more successful than methodologies that must also
rely upon the second assumption.

This tutorial provides an overview of a valuation
framework within which the \preference of more to
less" assumption can be quantitatively expressed as
an optimization problem. In addition, we develop
the necessary conditions under which the \preference
of more to less" assumption is su�cient for valuation
purposes in a frictionless market.

The optimization formulation

The behavioural assumption that investors prefer
more to less guides the actions of arbitrageurs who
seek to construct a position of holdings that maxi-
mize arbitrage pro�ts. Arbitrage pro�ts are typically
classi�ed on the basis of �rst- and second-order arbi-
trage. First-order arbitrage occurs when a portfolio

can be constructed that yields positive cash
ow to-
day with no obligations in any future state. Second-
order arbitrage occurs when a costless portfolio can
be constructed that guarantees no future obligations
but where there is a possibility of a strictly positive
payo� in at least one future state.

The behaviour of arbitrageurs who act to maxi-
mize �rst-order arbitrage can be modeled as a multi-
state, single period linear program:

minimize: c = pTx (1)

x

subject to: ATx � 0 (2)

x unrestricted (3)

In this model, there are n independent securities
andm possible future states. A represents the nxm
matrix of payo�s for security i in state j and aij is
the guaranteed payo� of security i in state j. The
market price that investors pay for security i is equal
to pi; p represents the nx 1 vector of security prices.
An investor purchases a portfolio with holdings in se-
curity i in the amount of xi. It is assumed that there
are no long or short constraints on the purchases of
any of these securities. Thus, x, the n � 1 vector of
security holdings, is unconstrained. 0 represents an
m � 1 vector of zeros.

Case Cash Flow Linear Program Solution

Today Future Objective Constraints

First-Order Arbitrage cash extracted no oblication unbounded, feasible
c = �1

Second-Order Arbitrage zero cost no obligation, bounded,
P

j aijxi > 0;

possibility of payo� c = 0 for some j

Market Equilibrium zero cost no obligation, bounded,
P

j aijxi = 0;

no payo� c = 0 for all j

Table 1.1: Summary of arbitrage and equilibrium conditions

The formulation of this approach follows the
multi-state, single period, discrete model developed
by Ross [3], and extended by Dybvig and Ross [1]
and by Prisman [2]. In their model, each possible
future state, j, has a strictly positive probability of
occurrence, �j. The vector � is an m � 1 vector of

state probabilities.

In this framework, an investor's objective to
maximize arbitrage pro�ts (Equation 1) is re-
expressed as an objective to minimize the cost, c, of
purchasing a portfolio. The state constraints (Equa-
tion 2) restrict the feasible solutions to those for
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which the net payo� over all trades is non-negative
for each state. Investors are able to buy (x > 0)
or sell (x < 0) in unrestricted quantities (Equation
3). Given that all investors observe the same payo�
matrix, A (i.e., no di�erential taxation), and that
there are no long and short constraints, the market
is assumed to be frictionless.

When the value of the objective function is nega-
tive, cash has been extracted from the trades. When
the value is zero the trades are costless. Since the
\no trade" solution (x = 0) is always feasible, the
solution to the problem is non-positive.

Though the problem is feasible, it may be
bounded or unbounded. There are three cases to
consider. In the �rst case, the problem is unbounded
and the solution to the objective function is negative
in�nity for a given set of security prices. This is the
case of �rst-order arbitrage whereby unlimited cash
may be obtained today with no future obligations.
In the second and third cases the problem is bounded
and the solution to the objective function is zero.

In the second case at least one of the constraints
is solved as a strict inequality. This is the case of
second-order arbitrage: given a costless initial in-
vestment, there is some possibility of a strictly pos-
itive future payo�. In the third case, all constraints
are solved as strict equalities. This is known as the
\no-arbitrage condition" since no �rst- or second-
order arbitrage opportunities are available. The im-
plications for the present and future cash 
ows, the
objective function and constraints of the optimiza-
tion solution are summarized in Table 1.

Market equilibrium

The no-arbitrage condition describes a market equi-
librium whereby security prices adjust, in response
to supply and demand forces, so as to eliminate any
�rst- and second-order arbitrage opportunities. In
other words, the actions of arbitrageurs, as they at-
tempt to maximize arbitrage pro�ts, serve to force
prices of relatively underpriced securities higher and
those of relatively overpriced securities lower until
an equilibrium is reached. Price equilibrium exists
when all �rst- and second-order arbitrage opportu-
nities are eliminated.

The existence of e�cient markets where investors
can both observe and act on arbitrage opportunities,

is critical to the assumption that observed security
prices in market equilibrium are arbitrage free. The
no-arbitrage condition is the key premise underlying
most valuation methodologies used to price �nancial
securities.

The dual of the problem

Given the absence of �rst-order arbitrage in market
equilibrium (the primal problem is bounded), the
following relationship may be derived from the dual
problem:

Ad = p (4)

and, as a consequence of the absence of second-
order arbitrage (the state constraints are solved with
equality):

d > 0 (5)

where d represents the m � 1 vector of dual prices
and dj the dual variable associated with state j. The
vector of dual prices, d, is also known as the \state
price" vector. Equations 4 and 5 represent a state-
ment of the \Fundamental Theorem of Asset Pric-
ing", a formal proof of which is contained in Prisman
(1986).

The dual variables have the standard interpreta-
tion. If an investor is required to earn a payo� of
at least one unit in state j the objective function
increases by an amount dj . Accordingly, an arbi-
trary security, with a payo� of one unit in state j

and zero otherwise, must have a price equal to dj .
Such an instrument is known as an Arrow-Debreu
security. By de�nition, each Arrow-Debreu security
is an independent security.

Complete markets

When the number of independent securities, n, is
equal to the number of states, m, the market is said
to be complete. Unique prices for all m (indepen-
dent) Arrow-Debreu securities can only be deter-
mined in complete markets. A risk-free instrument
has payo�s over the m states that are, by de�nition,
equal. The price of a risk-free security paying one
unit in each state must, therefore, be equal to the
price of a portfolio containing one of each Arrow-
Debreu security, j, or simply

P
j dj . The risk-free
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rate, rf , associated with the term of the single pe-
riod, must be:

rf=
1
m
�1X

j=1

dj (6)

Furthermore, a security, i, with arbitrary payo�s
can be expressed as a combination of m independent
securities with holdings equal to the payo� in each
state of the new security:

pi =
mX
j=1

aijdj (7)

Thus, any new security may be priced simply as
a portfolio of Arrow-Debreu securities.

Note, signi�cantly, that in a complete market, an
arbitrary security can be priced without knowledge
of either its expected payo�, Efaijg, or the proba-
bility of its payo�s, �j , over each state. As a result,
the pricing of securities in a complete market re-
quires neither the explicit modeling of an investor's
attitudes towards risk nor a description of the dis-
tribution of payo�s across states. Investor attitudes
towards risk are entirely embedded in the prices of
the Arrow-Debreu securities. As a consequence, only
the assumption underlying the no-arbitrage condi-
tion, the \preference of more to less", is necessary
for valuation purposes.

Risk-neutral valuation

The fact that state probabilities are unnecessary for
valuation purposes motivates the approach of \risk-
neutral valuation", so called because the valuations
are independent of any assumptions made about in-
vestor attitudes towards risk. If investors are truly
risk-neutral, the true expectation of any payo� dis-
tribution across states can be discounted at the risk-
free rate. Since investors are not typically risk neu-
tral, the expected payo�s cannot be discounted at
the risk-free rate. Nonetheless, a simple algebraic
manipulation of the dual relationship produces for
each state, j, a new variable, ��j , that has the charac-
teristics of a risk-neutral probability. The magnitude
of each ��j is calculated such that the risk-neutral ex-
pected payo� across states, A��, can be discounted

at the risk-free rate to return the correct price, that
is:

0
@ mX

j=1

dj

1
AA�� = p (8)

where (rewriting Equation 6):

1

1 + rf
=

mX
j=1

dj (9)

and:

��= d
mX

j=1

dj (10)

The vector �� represents the m � 1 vector of
risk-neutral probabilities. As the result stems from
a simple algebraic manipulation, the risk-neutral ap-
proach is appropriate regardless of an investor's true
attitude towards risk.

Two state, two security example

In a two-state, two-security market, the behaviour
of arbitrageurs can be modeled as a linear program-
ming problem:

minimize: c = p1x1 + p2x2

x

subject to: a11x1 + a21x2 � 0

a12x1 + a22x2 � 0

x unrestricted

where p1 represents the price of security 1, x1 repre-
sents the holdings in security 1, and a12 represents
the guaranteed payo� of security 1 in state 2.

Graphically, the primal problem can be repre-
sented by Figure 1:
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x2

x1

x2

a11–

a21
------------x1=

x2

a12–

a22
------------x1=

x2
c

p2
------

p1
p2
------x1–=

Figure 1: Feasible region and objective function

where the lines representing State Contraint 1 and
State Constraint 2 can be represented, respectively,
as:

x2 = �
a11

a21
x1

x2 = �
a12

a22
x1

and, where the line representing the objective func-
tion can be represented as:

x2 = �
p1

p2
x1

In the case of �rst-order arbitrage, the slope of
the line representing the objective function is either
greater than, or less than, the slopes of both of the
lines representing the state constraints. Assume that
the (absolute) slope of the objective function is less
than the (absolute) slopes of the constraints (Figure
2).

x2

x1

x2

a11–

a21
------------x1=

x2

a12–

a22
------------x1=

x2
c

p2
------

p1
p2
------x1–=

Figure 2: A case of �rst-order arbitrage

Then:

a12

a22
>

a11

a21
>

p1

p2

The objective function and the constraints inter-
sect at the origin, where c = 0. However, all holdings
bounded by the objective function and State Con-
straint 1 that are long x1 and short x2 are feasible.
As x1 increases, c becomes more negative: the solu-
tion is unbounded and arbitrageurs reap unlimited
�rst-order arbitrage until prices readjust.

If the slope of the line representing the objec-
tive function is equal to either of the slopes of the
lines representing the state constraints, there are an
in�nite number of solutions and an opportunity for
second-order arbitrage exists.

Assume that the objective function coincides
with State Constraint 1 (Figure 3).

Then:

a12

a22
>

a11

a21
>

p1

p2

The objective function and the constraints inter-
sect at the origin. At every point along the objective
function c = 0. The distance between the objective
function and State Constraint 2 is the slack in State
Constraint 2. An arbitrageur is encouraged to in-
crease his holdings (long x1 and short x2) to maxi-
mize the opportunity for payo� in state 2. Again, in
market equilibrium, prices readjust until opportuni-
ties for second-order arbitrage are eliminated.

Recall that in no-arbitrage equilibrium, the rel-
ative prices of securities are such that the objective
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function has a solution equal to zero and the state
constraints are solved as strict equalities. The no-
arbitrage condition thus places bounds on relative
security prices such that, at optimality, the objec-
tive function lies completely within the cone de�ned
by the state constraints. In a two-state model, this
implies that:

a12

a22
>

p1

p2
>

a11

a21
(11)

x2

x1

x2

a12–

a22
------------x1=

x2

p1
p2
------x1–=

x2

a11–

a21
------------x1=

Figure 3: A case of second-order arbitrage

Again, the objective function and the constraints
intersect at the origin (Figure 4).

x2

x1

x2

a11–

a21
------------x1=

x2

a12–

a22
------------x1=

x2

p1
p2
------x1–=

Figure 4: A case of market equilibrium

In market equilibrium, this is the unique, optimal
solution. Any movement from the origin is either in-
feasible or sub-optimal.

Calculating dual variables

Given the no-arbitrage condition in market equi-
librium, the following relationships may be derived
from the dual problem (Equation 4):

a11d1 = a12d2 = p1 (12)

a21d1 = a22d2 = p2 (13)

where d1 represents the price of the Arrow-Debreu
security corresponding to State Constraint 1, a secu-
rity that pays one unit in state 1 and zero otherwise.
In this complete market (n = m = 2), unique val-
ues for the prices of Arrow-Debreu securities may be
calculated as:

d2 =
p2 � a21d1

a22
(14)

d1 =
p1a22 � p2a12

a11a22 � a12a21
(15)

From Equation 7, the price of a new security,
i, with payo�s, ai1 and ai2 over states 1 and 2 can
be priced as a portfolio of Arrow-Debreu securities
with holdings equal to the new security's payo�s in
each state. Therefore, the equilibrium price of a new
security, pi, in market equilibrium is equal to:

pi = ai1d1 + ai2d2 (16)

Note that the risk-free security, with a payo� of one
unit in each state, has a price equal to d1 + d2.

In risk-neutral valuation, the price of the ar-
bitrary security with risk-neutral expected payo�s
of ai1�

�

1 + ai2�
�

2 , is equal to the price of units of
ai1�

�

1 + ai2�
�

2 the risk-free security (Equation 8):

pi = (ai1�
�

1 + ai2�
�

2) � (d1 + d2) (17)
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where the risk-neutral probabilities, ��1 and ��2 for
states 1 and 2, can be calculated as (Equation 10):

��1 =
d1

d1 + d2
(18)

��2 =
d2

d1 + d2
(19)

Summary

This tutorial provides an overview of the \Funda-
mental Theorem of Asset Pricing" as it applies to the
valuation of securities in a complete and frictionless
market. In the absence of arbitrage opportunities,
a strictly positive and unique price exists for the
Arrow-Debreu security associated with each state.
This approach is developed within a multi-state sin-
gle period model and is subsequently re-expressed in
terms of a multi-period, single-state framework to
model the bootstrapping problem.

However, in a market that is incomplete, the
\preference of more to less" assumption is not suf-
�cient to determine unique prices for the Arrow-
Debreu securities, although bounds on these values
may be found. As a consequence, valuation method-
ologies in incomplete markets require that further
assumptions be made with respect to investor atti-
tudes towards risk.
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Bulletin

Conferences

An International Conference on Complementar-
ity Problems will be held in Madison, Wisconsin on
June 9 - 12, 1999. The contemporary applications
and algorithms that will be emphasized at the meet-
ing will re
ect the 35 years that have passed since
complementarity was formally introduced and em-
ployed as a powerful mathematical model for a wide
spectrum of problems in diverse �elds.

The conference is intended to bring together en-
gineers, economists, industrialists, and academicians
from the U.S. and abroad who are involved in pure,
applied, and/or computational research of comple-
mentarity and related problems.

The conference will consist of invited presenta-
tions, and is limited to 100 participants (including
the speakers). A refereed volume of proceedings of
the conference will be published. There are three
major themes of the conference: engineering and
machine learning applications, economic and �nan-
cial applications, and computational methods. Each
theme will be represented by several experts in the
area.

Further details on the meeting, including regis-
tration deadlines, hotel and travel information can
be found at: http://www.cs.wisc.edu/cpnet/iccp99

Michael Ferris

Olvi Mangasarian

Jong-Shi Pang
(co-organisers)

New Journal in Optimization and
Engineering

Aims and Scope. Optimization and Engineer-
ing is a new multidisciplinary journal to be pub-
lished by Kluwer Academic Publishers. Its primary
goal is to promote the application of optimization



methods in the general area of engineering sciences.
This includes facilitating the development of ad-
vanced optimization methods for direct or indirect
use in engineering sciences. The journal provides a
forum in which engineering scientists obtain informa-
tion about recent advances of optimization sciences,
and researchers in mathematical optimization learn
about the needs of engineering sciences and success-
ful applications of optimization methods. Its aim is
to close the gap between optimization theory and
the practice of engineering.

All optimization methods of relevance to appli-
cations in engineering sciences will be considered:
deterministic and stochastic, continuous, mixed in-
teger and discrete, when they are relevant for ap-
plications in engineering sciences. The journal also
strives to publish successful applications of optimiza-
tion in various engineering areas.

The scope of the journal includes the following:

Optimization. All mathematical methods and
algorithms of mathematical optimization. Numer-
ical and implementation issues, optimization soft-
ware, bench-marking, case studies. Speci�cally: lin-
ear and convex optimization, general nonlinear and
nonlinear mixed-integer optimization, combinato-
rial optimization, equilibrium, multilevel and multi-
objective optimization, stochastic optimization.

Engineering Sciences. Electrical engineering,
VLSI design, robotics, mechanical and structural en-
gineering, geophysical engineering, civil engineering,
industrial engineering, chemical and process engi-
neering, aerospace engineering, water management,
environmental and bio-engineering, transportation
and communication sciences.

SUBMISSIONS

Papers submitted for publication in OPTIMIZA-
TION AND ENGINEERING should be sent to the
editor in chief

Tamas Terlaky

Department of Statistics, Stochastic and Operations
Research
Faculty of Information Technology and Systems
Delft University of Technology

P.O. Box 5031, 2600 GA Delft, The Netherlands
E-mail: T.Terlaky@twi.tudelft.nl
URL address: http://ssor.twi.tudelft.nl/ terlaky

Electronic submission of papers is strongly en-
couraged.

Comments from the Chair
and Editor

This issue is focused entirely on optimization ap-
plied to the problems of �nance. Our hope is that we
will have one issue each year devoted to one particu-
lar application area. If you have any ideas that you'd
like to suggest for application areas, please contact
any SIAG/OPT o�cer.

We would like to remind you that this is your
newsletter. Please consider submitting an exposi-
tory article on your favorite optimization applica-
tion (or any other interesting aspect of optimiza-
tion.). Such articles can be very useful in spread-
ing the word about optimization and its importance,
throughout the SIAG/OPT community and beyond.
They can also be wonderful classroom aids, help-
ing students see the importance of optimization and
applied mathematics more generally. Please con-
tribute.

Thomas F. Coleman, SIAG/OPT Chair
Computer Science
Cornell University
Ithaca, NY 14853
coleman@tc.cornell.edu

Juan C. Meza, Editor
Sandia National Laboratories
P.O. Box 969, MS 9011
Livermore, CA 94551
meza@ca.sandia.gov


