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Train Control Optimization

S.P.Gordon and P.J.Williams
Sandia National Laboratories, Livermore, CA 94551

1. Introduction.

A new era of automatic train control has begun, in
which mass transit trains will be commanded with
precision beyond the capabilities of past systems.
Although transit properties such as San Francisco's
Bay Area Rapid Transit (BART) have controlled
their trains automatically for decades, the control

systems have limited capability. Increases in capac-
ity now require trains to run closer together than
these systems can accommodate, so new systems are
being developed. These new systems, such as the
Advanced Automatic Train Control (AATC) system
under development by BART in collaboration with
Raytheon Corporation and Harmon Industries, will
increase the capacity of the system through more ac-
curate train location and more precise control. Al-
though the need to increase capacity has been the
main driver for these new systems, they will also en-
able smoother service and improved energy manage-
ment. However, incorporating smoother service and
improved energy management into the control sys-
tem will require optimization of a complex dynamic
system.

Sandia has collaborated with BART to develop a
simulator of the train control and power consump-
tion of the AATC system. The simulator has enabled
us to develop enhanced train control algorithms to
supplement the safety-critical controller. These al-
gorithms do not attempt to globally optimize the
control system with respect to a cost function, but
rather they modify the baseline vital control using
heuristics to smooth out train operations, and to re-
duce energy consumption and power infrastructure
requirements. Although enhanced train control algo-
rithms provide a valuable �rst step toward optimiza-
tion, they represent only a fraction of the ultimate
capabilities of the system. We are now beginning
work toward true optimization of the control system.
Train control optimization encompasses such classes
of optimization as mixed integer nonlinear program-
ming, nonlinear discrete-time optimal control, and
multi-objective optimization.

2. Automatic Train Control.

Current automatic systems employ �xed block cir-
cuitry, hard-wired into the train tracks, to locate
and transmit speed commands to the trains. Due to
the �xed circuitry, trains can be located and issued
new speed commands at intervals of several hundred
to a thousand feet. In addition, the train speed may
only be commanded with roughly ten available speed
commands separated by 5 to 20 mile-per-hour incre-
ments. Finally, a train may only accelerate at full
or half acceleration. The AATC system, by con-
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trast, will use radios to locate the trains to within
15 feet, will send new commands every half second,
will transmit speed commands with one mile-per-
hour precision, and will provide fully selectable ac-
celeration rates [1]. The train commands will be
generated by station (zone) controllers, which will
command all of the trains on lengths of track sev-
eral miles long. This architecture, shown in Figure
1, permits some centralized-control capability, with
the actions of multiple trains in an area coordinated
by a single controller. There is a Central control,
but it will provide only limited capability, such as
adjusting station dispatch times and train `perfor-
mance levels'. However, the control system is not
truly centralized, as there are multiple station con-
trollers, each with control over a section of the over-
all system. Thus, the AATC system provides some
of the bene�ts of centralized control, but simultane-
ously contains the complexity of distributed control.

In the initial work on this problem, the distributed
nature of the control was ignored to make the prob-
lem tractable, and the control system was treated as
though it was centralized. It was assumed, how-
ever, that each station controller would be aware
of the trains in its neighboring zones, so that each
controller could make more global decisions. Neigh-
boring zone knowledge is particularly important for
power-related algorithms, since all of the trains in
an area, including trains traveling in opposite direc-
tions, share power resources.

control zone 

ethernet

radio

Station n

Central

Station n+1
 boundary

radio signal

train

Figure 1.1: AATC communication system architec-
ture

3. Control Optimization.

In general, there are two classes of optimization
problems related to train control. The �rst is a
scheduling problem. In this case, trip time from
end-to-end of the system must be minimized, subject
to some capacity constraints. The second problem
treats the schedule as a constraint, and optimizes
for the smoothest ride and the minimum energy re-
quirements. Thus far, we have focused on the second
problem.

3.1 Schedule optimization.

The layout of the BART system is shown in Figure 2.
Since most commuter tra�c is headed to and from
San Francisco, the R-, C-, and A-lines all merge at
the Oakland Wye into the M-line in San Francisco.
This results in a high density of tra�c on the M-line,
as well as a severe constraint on the schedule. Trains
approaching the merge are given a time slot during
which they must enter the Wye, so that the trains
from each line will neatly interleave. Projecting back
from this merge, while allowing adequate time at
each station stop, constrains the dispatch time of
the trains onto each of the R-, C-, and A-lines.

Daly City
 (M -line)

Fremont
(A -line)

downtown

Oakland Wye

San Francisco

transbay
 tunnel

Concord
 (C -line)

Richmond
(R - line)

Figure 1.2: BART system diagram

In addition to satisfying the Oakland Wye con-
straint, the control system must simultaneously at-
tempt to maximize system throughput and minimize
scheduled headway, to provide passengers with fast
and frequent service. Headway is de�ned as the time
between consecutive trains passing a point on the
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system. When trains are far enough apart, trains
do not a�ect each other's behavior and each train's
trip time from end-to-end of the line is minimized.
If headway is reduced su�ciently, trains will begin
to interfere and will be forced to brake occasionally
in order to maintain a safe following distance. Op-
eration at such `interfered headways' results in in-
creased trip time. Thus, there is a trade-o� between
headway and trip time minimization.

Longer trip times not only irritate passengers, but
also increase infrastructure costs because more trains
are required on the system. When a train reaches the
end of the line, it must be turned around and pre-
pared to begin a run back up the line. If the train
arrives at the end of the line with enough time to
turn around before the next dispatch time, it be-
comes the next scheduled train. On the other hand,
if there is insu�cient turn around time, then another
train must be available for the next run. Thus, a
small reduction in trip time can potentially reduce
the number of trains required to be simultaneously
operational and consequently reduce infrastructure
costs.

Unfortunately, minimizing trip time and satisfying
the schedule constraint at the OaklandWye does not
leave much 
exibility for considering additional ob-
jectives. However, the schedule has considerable im-
pact on other important service- and energy-related
goals. On the service side, commuters appreciate the
ability to transfer easily from line to line at trans-
fer stations. For example, there is a line that runs
from Richmond to Fremont. Commuters from Rich-
mond to San Francisco would like to board the �rst
arriving train, independent of its destination, and, if
necessary, transfer in the Wye. The BART system
has not always managed to create a schedule that
allows for e�cient transfers.

On the energy side of the equation, energy may
be saved on the system from coordinated train ar-
rival and departure times in stations. BART trains
regenerate energy when they brake, and regenera-
tive energy cannot 
ow back into the electric util-
ity's power grid. Some of this energy may go unused,
unless another train is accelerating nearby. Coordi-
nated station stops and departures may save energy.
However, even a schedule with perfect coordination
for minimum energy usage may be confounded by
random dwell-time delays due to passengers block-

ing doors and the like.

To date, service-related goals have been taken into
account in the schedule, but energy-related goals in
general have not. We have not pursued this type
of optimization with BART, because the schedule
is heavily constrained, and it may not be possible
to make signi�cant improvements. We believe there
is a larger payo� in the schedule-constrained arena
described below.

3.2 Schedule-constrained control opti-

mization.

As we have explained, the train schedule is designed
to minimize trip time. Thus, the nominal behavior
for a train is to attain full acceleration out of a sta-
tion as soon as the schedule permits, to maintain the
best possible speed in between stations, and to brake
for the next station stop. Any decreases in train ac-
celeration or speed would result in increases in trip
time, which could lead to missed slots in the merge
or late arrivals at the end of the line necessitating ad-
ditional trains on the system. Consequently, there is
little room for optimization of train operations under
these conditions.

Nonetheless, the system is designed to allow the
scheduling of trains at close headway, so that any
small delay can cause train interference. Interfer-
ence occurs when a train is forced to brake or travel
slower than its nominal speed because it is closely
following another train. Suppose trains are sched-
uled at two-minute headways, and a train is delayed
by over a minute. The train behind it will catch
up, and will brake to maintain a safe following dis-
tance. Train interference due to delays can include
anything from slight premature braking between sta-
tions, to full-
edged backups. These events can also
result in wasted energy or even power shortages. On
a daily basis, the current system experiences approx-
imately 20 delays of �ve or more minutes. Interfer-
ence will become more the rule than the exception
as the scheduled headway becomes shorter, and un-
der these conditions control optimization can play
an important role. The enhanced train control algo-
rithms that we have designed to date for the AATC
system have targeted o�-nominal conditions, such as
backups, braking due to interference, and low train
motor voltages due to excessive power demand. We
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will discuss only two examples here, but more are
contained in [2] and [3].

The �rst control algorithm relates to backup re-
covery. A backup occurs if a train stops for a period
that is several times the scheduled headway. This
can occur in either a station or between stations.
An algorithm was developed to recognize backups
and to reduce the speeds of approaching trains in
an e�ort to avoid their stopping outside the station
behind the stopped train. If the delay continues for
a prolonged period, some trains will eventually be
forced to stop in a backup behind the delayed train.
When the delayed train �nally begins to move, the
algorithm staggers the starts of any stopped trains
to avoid simultaneous acceleration, which can lead
to power spikes and voltage sags. In addition, ap-
proaching trains are controlled so as to arrive after
the backup clears. If additional delays occur in the
station, then the algorithm again reduces the speeds
of all approaching trains accordingly. As long as ad-
ditional delays are on the order of the station dwell
time (20 seconds) or less, this approach prevents fur-
ther stoppages. However, a substantial delay to a
second train can cause the backup to recur, and the
algorithm restarts.

Figure 3 shows the results of simulation runs in
which a train is delayed in a station for 400 seconds.
Trains are approaching the backup at 120-second in-
tervals. The graphs show the full length of each train
as a shaded region along the location axis. The tra-
jectory is 
at when a train is stopped and sloped
when it is in motion. The backup moves through
the station with nominal control in Figure 3a, and
with the delay-recovery algorithm operating in Fig-
ure 3b. Not only does this control technique pro-
vide obvious improvements in passenger comfort and
reduced wear-and-tear on the motors from mode-
changes (switching from propulsion to braking), it
also accrues power-related bene�ts. If such a delay
occurs in an area of limited power availability, the al-
gorithm helps to prevent low voltages. Voltage sags
can result from the large power demand of multiple
accelerating trains, and can cause train motors to
shut down to avoid damage.

The delay-recovery algorithm discussed above
helps to avoid low voltages by spreading power de-
mand over time. However, there are many poten-
tial causes of high power demand. Therefore an al-

Figure 1.3: 400 second delay in a station. Ap-
proaching trains arrive at 120-second intervals. (a)
Train trajectories under nominal control during a
backup. (b) Train trajectories under enhanced train
control. The delay recovery algorithm smoothly and
e�ciently controls backed-up trains, while limiting
stops outside of the station.

gorithm to avoid low voltages in general would be
quite valuable. Such an algorithm requires the ca-
pability to predict train voltage, which is a nonlinear
function of the power demand of each train in a re-
gion. To provide this predictive capability, we have
developed a neural network that can estimate the
voltage at a train given the power demands in the
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train's vicinity. Using this neural net, we have de-
veloped an algorithm that we believe can prevent
power demand surges and their resultant voltage
sags, thereby avoiding costly train motor shutdowns
or damage. The only alternatives to such an algo-
rithm are either the modi�cation of on-board mo-
tor control to reduce power demand in response to
low voltage or the installation of su�cient power in-
frastructure to avoid low voltages regardless of the
trains' behavior. To date, BART has used the latter
approach. If an algorithm such as the one we tested
can modify train behavior to avoid such events, this
can save tens of millions of dollars in power infras-
tructure costs.

4. Modeling Issues.

Thus far, only heuristic control algorithms have been
designed for the AATC system. Now, we want to
pursue the ultimate goal of enhanced train control by
optimizing the system with respect to an objective
function. To accomplish this goal with respect to the
schedule-constrained control problem, we can model
enhanced train control as either an optimal control
problem or a dynamic programming problem.

In the �rst scenario, we could pose the control al-
gorithm as a nonlinear discrete-time optimal control
problem, where the control variables are the speed
and acceleration commands of each train. The state
variables would be the locations, speeds, and accel-
erations of all the trains.

As an alternative we could formulate enhanced
train control as a dynamic programming problem
and backward predict each train's behavior as a func-
tion of its immediate lead train. Assume we know
the lead train's location, speed, and acceleration at
time T . Using this predicted information, we can
optimize our objective function with respect to the
current speed and acceleration commands while pre-
venting interference.

Irrespective of the problem formulation, the �rst
step is to select a metric to optimize. Possible
metrics include minimization of train-minutes of de-
lay, reduction of energy costs, reduction of motor
mode-changes, and improvement of passenger com-
fort. Initially, we will ignore the energy-related con-
cepts and concentrate on improving passenger com-
fort. Although energy-related concepts are explicitly

ignored, a smoother ride tends to increase system re-
liability and avoid power spikes.
Passenger comfort may be measured in terms of

the smoothness of the ride, which is related to the
amount of accelerating or decelerating that a train
exhibits. Our objective function will represent a
measure of ride smoothness. One possibility is

min
1

2

Z T

0

h
u(t)Tu(t)

i
dt;

where u(t) is the acceleration command vector at
time t and T is the total simulation time.
First, we will optimize the system locally between

station stops instead of over the entire line. As in
the heuristic control algorithm, we will initially ig-
nore the distributed complexity of the system by as-
suming a single controller and a single control zone.
Speed safety checks will be incorporated as con-

straints.

5. Summary.

The new generation of communication-based train
control systems such as the AATC will allow new
possibilities in precision train control and multi-train
coordination. Energy as well as control-related ob-
jectives may be pursued with these systems. We
have taken a �rst step in this direction, using heuris-
tic control algorithms to enhance the capabilities of
the AATC. Optimization of these systems provides
an important challenge, with potential bene�ts for
transit systems worldwide.
Complete train control optimization will involve

such research areas as mixed integer nonlinear pro-
gramming to model the scheduling problem, nonlin-
ear discrete-time optimal control problems to model
interference and backup recovery, and �nally multi-
objective optimization to simultaneously optimize
varied energy- and service-related objectives.
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Linear Programming for
Emergency Broadcast Systems

Michael C. Ferris and Todd S. Munson

Computer Sciences Department, University of Wisconsin,

1210 West Dayton Street, Madison, Wisconsin 53706. 1

This short note describes an application of linear
programming embedded in emergency broadcast sys-
tem hardware. In many communities, large sirens
sound when tornados, or other disasters, threaten.
These warning systems save many lives each year.
However, the current system is typically ine�ective
for several reasons. Each siren covers a broad area
and is di�cult or even impossible to hear in many
locations. Furthermore, individuals are unable to
distinguish between di�erent disaster types. The ac-
tion taken during a tornado warning is very di�erent
from that taken when a chemical spill occurs. Fi-
nally, some disasters only a�ect a small area, while
the siren blankets the entire community.

As a result, Alert Systems [1] has developed a sys-
tem to overcome these limitations. In a 911-center,
a simple graphical interface displays a map of the
controlled area. The operator outlines a polygon
containing the current danger area using a mouse

1This research was supported in part by Alert Systems,
Inc.

pointer device. The coordinates of the polygon's ver-
tices and a relevant message are then transmitted as
a radio signal on a controlled frequency to receivers
located throughout the community. If a receiver,
which knows its own location, is within the trans-
mitted polygon, it must start beeping and display
the short message detailing the nature of the disas-
ter transmitted with the coordinates. If it is outside
the a�ected area, the system remains silent.

This problem is easily seen to be a linear program.
In essence, it is just a feasibility problem; determine
if the location b = (b1; b2) of the receiver is within
the polygon de�ned by the vertices x1; : : : ; xn. More
simply stated, can b be represented as a convex com-
bination of the vertices x1; : : : ; xn? To solve this
problem we introduce arti�cial variables e1; e2 and
set up the linear program:

min�;e e1 + e2
subject to

Pn
i=1 x

i�i +De = bPn
i=1 �i = 1; �i � 0; e1; e2 � 0

where D is a diagonal matrix with diagonal entries
Dii = sign(bi � x1i ); i = 1; 2. We choose these values
for D in order to guarantee that the linear program
has a feasible point, (� = (1; 0; : : : ; 0); e = jb � x1j).
Furthermore, the problem is bounded below by 0.
Hence, it has an optimal solution which can be found
by the simplex method. If the optimal value is 0,
the receiver is within the polygon and the signal is
activated; otherwise one of the errors ei is positive
and the receiver is outside the polygon and remains
inactive.

End of story { not quite. The remaining di�-
culty is that the receiver must be mass produced.
Hence, the manufacturer has decided to use a pro-
cessing unit that has been restricted so that only
integer arithmetic is allowed. While we could emu-
late 
oating point operations on this processor, we
might encounter problems with numerical error. We
do not consider this option because the system must
be stable for all allowable inputs (we have real peo-
ple depending upon the outcome). Another option
is to store all of the values as rational numbers. By
writing routines to perform the operations required
using rationals, the code can be executed using ex-
act arithmetic. However, a much simpler technique
which only uses integer variables and the addition,
subtraction, and multiplication operations is devel-
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oped below.
The manufacturer suggested forcing the coordi-

nates xi to lie on an integer grid and regarding the
location of the system as integer. The issue is now
to implement the simplex method using only integer
arithmetic. Given a canonical form linear program

miny cT y
subject to Ay = b

y � 0

we assume that an initial basic feasible solution is
known with the variables partitioned into basics, B,
and non-basics, N . This is easy to ensure in the
above application. The steps of the revised simplex
method [2] are then:

1. yB = A�1
�B b.

2. rTN = cTN � cTBA
�1
�B A

�N ; if rN � 0 stop optimal.

3. Choose j = N(s) s.t. rj < 0.

4. Calculate d = A�1
�B A

�j. If d � 0, stop un-
bounded.

5. Choose r s.t.
yB(r)

dr
= minf

yB(i)

di
j di > 0g.

6. Swap B(r) and N(s) and goto 1.

In the following discussion, we assume that A, b, and
c consist of integer data. Using the fact [3] that

A�1
�B =

1

det(A
�B)

adj(A
�B)

where adj(�) denotes the adjugate matrix, and some
algebraic manipulation, we can re�ne the revised
simplex method to use only integer arithmetic. Note
that the determinant and adjugate can be evaluated
in integer arithmetic using only additions and multi-
plications. For example, in step 1, we could evaluate

yB =
1

det(A
�B)

adj(A
�B)b:

We will now outline why the required division here
is redundant in the application.
For step 2, we note that the reduced costs, rTN ,

are invariant under multiplication by a positive con-
stant. Letting � = sign(det(A

�B)), it is clear that
that �det(A

�B) is a positive constant. We now cal-
culate our reduced costs as follows:

RT
N := �det(A

�B)r
T
N = �(det(A

�B)cN�c
T
Badj(A�B)A�N ):

If RT
N � 0, then we can stop at an optimal solution.

Otherwise choose j = N(s) s.t. RT
N < 0.

Since

d =
1

det(A
�B)

adj(A
�B)A�j ;

step 4 becomes: if �adj(A
�B)A�j � 0 stop un-

bounded. Otherwise, we need to perform the ratio
test of step 5. Looking at

yB(r)

dr
we immediately note

that the quantity 1
det(A

�B)
factors out of each term.

We implicitly store the resultant
(adj(A

�B)b)r
(adj(A

�B)A
�j)r

as a

rational number. We �nd the minimum of all the el-
igible values by calculating a common denominator,
and comparing the integer numerator.
To summarize, our re�ned revised simplex method

is as follows:

1. Calculate � and RT
N as above. If RT

N � 0, stop
optimal. Otherwise choose j = N(s) s.t. RT

N <
0.

2. If �adj(A
�B)A�j � 0 stop unbounded. Let I =

fi j �(adj(A
�B)A�j)i > 0g.

3. While jIj > 1 do

(a) Let �i; î 2 I.

(b) Let

� :=

sign((adj(A
�B)A�j)�i(adj(A�B)A�j )̂i):

(c) If

�(adj(A
�B)b)�i(adj(A�B)A�j )̂i �

�(adj(A
�B)b)̂i(adj(A�B)A�j)�i

then I = I n î.

(d) Otherwise, I = I n�i.

4. Let r be the remaining element in I. Swap B(r)
and N(s) and goto 1.

Note in particular that no divisions are required.
The solution values yB are not needed since for the
application considered we only need to test whether
the optimal solution of the linear program is zero
or positive. Furthermore, for the production version
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of the code we have included the smallest subscript
anti-cycling rule [2] to prevent the simplex method
from failing to terminate because of cycling.

For large problems, this method is impractical and
not recommended. However, for the feasibility prob-
lem that Alert Systems needs to solve where typi-
cally n is less than 10, the above method works ex-
tremely well. Furthermore, by looking at our speci�c
grid size, we can symbolically evaluate all of the in-
formation needed and determine the maximum mag-
nitude of the integers required. This information
helps in the actual implementation of the algorithm
in hardware.
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Improving the Optimization and
Numerics in Laue Di�raction

Analysis

Zhong Ren, 1, Rongqin Sheng, 2 and

Stephen J. Wright 3

1. Introduction.

When X-rays are beamed onto a crystal, they are
di�racted to produce a regular array of \spots" of
varying intensity on an area detector. The locations
of the spots are determined by the crystal lattice,
while their intensities depend on the spatial and tem-
poral average conformation of all molecules in the
crystal and during data collection. By processing

1Department of Biochemistry and Molecular Biology, The
University of Chicago, 920 East 58th Street, Chicago, IL
60637, USA; renz@cars.uchicago.edu

2Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL
60439, USA; sheng@mcs.anl.gov

3Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL
60439, USA; wright@mcs.anl.gov

the data in these images, we can extract informa-
tion about the structure of the molecules. For large
biomolecules, this computational problem is one that
tests the limits of current capabilities.

We are interested in the Laue method of X-
ray di�raction, in which the incident X-ray is not
monochromatic, but rather is made up of a spread of
di�erent wavelengths. The Laue technique produces
complex di�raction images, but is more suitable in
situations in which data must be gathered quickly,
such as when our intention is to observe reactions
in progress (see, for example, Genick et al. [1]).
Another major advantage is that Laue di�raction is
more suited to synchotron sources (such as the Ad-
vanced Photon Source at Argonne National Labora-
tory), which naturally produce bright X-rays with a
spread of wavelengths.

The purpose of the LaueView code is to process
the raw data to obtain a set of corrected, accurate
structure factor amplitudes. LaueView was written
by one of the authors of this article (Zhong Ren)
and is described in detail by Ren and Mo�at [5, 6].
Our mission in the current project was to enhance
the optimization and numerical techniques used by
LaueView, to make it produce results of the same or
better quality in less computing time.

The focus of our investigations was on the scaling
part of the code, in which the measured intensities
are corrected to account for distortion e�ects. This
operation accounts for about half the execution time
on a typical data set and involves the most challeng-
ing algorithmic issues. (The remaining operations
in the code either require minimal time or are easily
parallelized.)

2. Outline of X-ray Di�raction.

Di�raction of X-rays by a crystal admits a beautiful
mathematical explanation in terms of lattice theory,
simple geometry, and other classical tools. Consider
a three-dimensional lattice with basis vectors a, b,
and c in IR

3, so that each point in the lattice can be
expressed as

xa+yb+zc; where x, y, and z are integers. (1)

The parallelepiped whose sides are the vectors a, b,
and c is referred to as the unit cell. The reciprocal



Volume 10 Number 1 February 1999 9

Figure 1.4: Di�raction from two points in the lattice
(beams di�ract in all directions from all points; we
show just a few directions here)

lattice is characterized by three basis vectors �a, �b,
and �c with the following properties:

a � �a = 1; a � �b = 0; a � �c = 0;

b � �a = 0; b � �b = 1; b � �c = 0; (2)

c � �a = 0; c � �b = 0; c � �c = 1;

where \�" denotes the standard (Euclidean) inner
product. The di�erence vector R between any two
lattice points is expressible in a form similar to (1),
that is,

R = xa+ yb+ zc; x, y, and z integers: (3)

In a crystal, the molecules are arranged in a lat-
tice. Each molecule in the crystal contains a number
of electrons, distributed in a cloud about the atomic
nuclei. When each of these electrons encounters the
incident X-ray, the electron is set in motion and be-
comes an oscillating dipole, and therefore a source
of secondary radiation. This process is known as
\scattering." Interference between the X-rays scat-
tered from the electrons in the crystal gives rise to
the di�raction patterns observed on the detector.
Suppose for the moment that scattering takes

place from a single scattering center at the same lo-
cation in each of the molecules. Because of the crys-
talline structure, these scattering centers make up a
lattice, whose basis vectors we denote as above by a,
b, and c. Consider any two centers, as shown in Fig-
ure 1.4, with displacement R of the form (3). Sup-
pose that the incident beam has direction t, which
we express in terms of the reciprocal lattice basis by

t = xt�a+ yt�b+ zt�c; ktk = 1=�; (4)

R

t

s

<R,s>

<R,t>

Figure 1.5: Beam from direction t di�racted in in
direction s from two lattice points separated by R,
showing di�erence in path length

for some coe�cients xt, yt, and zt. (The normal-
ization condition ktk = 1=� ensures that each di-
rection is uniquely speci�ed by the coe�cient triple
(xt; yt; zt).) Suppose we investigate a particular di-
rection of scattering s, also de�ned in terms of the
reciprocal basis vectors with the same normalization
condition as in (4) by

s = xs�a+ ys�b+ zs�c; ksk = 1=�: (5)

In Figure 1.5, we illustrate scattering in the di-
rection s from the two lattice points separated by
the displacement R of the form (3). The scattered
beams will remain in phase provided that the dif-

ference in path length is an integer multiple of the

wavelength �. Since the path di�erence is R � (s�t),
this condition can be expressed as

�R � (s� t)

= �(xa+ yb+ zc) �

[(xs � xt)�a+ (ys � yt)�b+ (zs � zt)�c] (6)

= �x(xs � xt) + �y(ys � yt) + �z(zs � zt)

= �M; for some integer M; (7)

where we used the relations (2) to derive the second
equality. Recall that if s is to yield a spot on the
detector, the relation (7) must hold for all pairs of
points in the lattice, that is for all integers x, y, and
z. This is possible only if the coe�cients of s satisfy
the relations

xs � xt = h; ys � yt = k; zs � zt = `; (8)

where h, k, and ` are integers.
The integer triple (h; k; `), along with the �xed

direction t of the incident beam, completely charac-
terizes the direction s. We refer to (h; k; `) as the
Miller indices.
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To summarize, we conclude from (5) and (8) that
the direction s will produce a spot on the detector
if it satis�es the following conditions for some set of
Miller indices (h; k; `):

s = (xt + h)�a+ (yt + k)�b+ (zt + `)�c; (9a)

k(xt + h)�a+ (yt + k)�b+ (zt + `)�ck = 1=�: (9b)

These relations constitute Bragg's law. Laue di�rac-
tion uses a number of wavelengths so there are many
more triples (h; k; `) that satisfy these relations for
some value of � in the range of the incident beam's
wavelengths.

Variation in intensity between the spots occurs be-
cause the scattering can happen from any point in
the electron cloud, not just the point scattering cen-
ters in our simpli�ed discussion above. Information
about the electron density function and the locations
of the atoms within each molecule then can be de-
duced from the measured intensities. We refer the
reader to [4] for additional details.

3. The LaueView Code.

LaueView, the code with which we worked in this
study, analyzes the measured intensity data from the
detector and outputs the structure factor amplitudes
for each set of Miller indices (h; k; `). For details, see
Ren and Mo�at [6]. After determining the measured
intensities (a process that itself involves numerical
integration and nonlinear least-squares techniques),
corrections are applied to account for such e�ects
as temperature factors, radiation damage, general
absorption, and, most important, the varying inten-
sity of the incident beam across its range of wave-
lengths. The resulting nonlinear least-squares data-
�tting problem involves a large number of observa-
tions (of the order of 105{106 for a protein data set)
and a relatively small number of parameters (typi-
cally 100{200).

LaueView2.5 is a Fortran 77 code of approxi-
mately 50,000 lines. Most of its arithmetic is per-
formed in single precision. A Unix shell script is
used to set up each run. The user edits this script
to select the parameters to be varied and those to
be �xed on a particular run and to indicate whether
the code should start \cold" or use the approximate
solution generated by a previous run as its starting

point. LaueView was used to produce the structures
reported in Ren et al. [7] and Genick et al. [1]
LaueView seeks a multiplicative scaling factor f to

be applied to each measured intensity I, to obtain
the corrected intensity fI. The factor f depends
on the Miller indices (h; k; `) and an index i of the
particular observation of this re
ection. In addition,
f depends on various parameters whose values are
to be recovered from the data-�tting process. It is
composed of a product of 12 factors, that is,

fLfP f�fisoSfanisoSfisoBfanisoBfisoDfanisoDfAfUfO;

where each factor represents a correction for a di�er-
ent e�ect, such a polarization, temperature factors,
isotropic and anisotropic scale factors, and wave-
length normalization. Each of these factors depends
on parameters whose values are recovered by �t-
ting the model to the set of measured intensities
by a nonlinear least-squares technique. The wave-
length normalization factor f� corrects for the fact
that the incident beam contains a spread of wave-
lengths, of varying intensity. The curve that relates
wavelength to intensity, known as the � curve, is
not known directly|it must be parameterized and
reconstructed by �tting our intensity data and by
using our knowledge of the crystal symmetry. Re-
dundant measurements at di�erent wavelengths and
knowledge of the symmetry are instrumental in re-
constructing the � curve.
In LaueView2.5, the � curve is de�ned in terms

of the Chebyshev basis functions cos(i arccos z), i =
1; 2; 3; : : :, for z 2 [�1; 1]. In our modi�ed version,
LaueView3.1, we switched to piecewise quadratic ba-
sis functions with local support, which gave an more
compact parameterization of the curve and hence re-
duced the processing time.

4. Numerical Computing Issues.

LaueView makes use of a number of numerical tech-
niques in curve-�tting, nonlinear least-squares, and
numerical linear algebra. In addition, it lends itself
quite readily to parallel implementation.
We mentioned above that a change to the curve-

�tting procedure yielded signi�cant savings. In the
nonlinear least-squares computation, LaueView2.5
used a Levenberg-Marquardt algorithm from Nu-

merical Recipes [3] which was not very e�cient, par-
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ticularly as it involved computation of the Jacobian
even at candidate iterates that were rejected because
of higher function value. We changed to an im-
plementation based on the trust-region Levenberg-
Marquardt algorithm described by Mor�e [2]. One
special feature of our problem was that it was not
practical to compute and store the full Jacobian J
of our residual function r, since the dimensions of
this matrix could be as large as 106 � 200. Rather,
we evaluted the rows of J and the elements of r in
sequence, and accumulated the products JTJ and
JT r, using these small data structures as the basis
of the step computation.

In LaueView2.5, single precision accumulation of
JTJ caused this matrix to be numerically inde�nite,
and the negative gradient vector �JT r to not be a
descent direction for the objective function 1

2krk
2.

These features caused the least-squares method to
stall and terminate prematurely. We switched to
double-precision accumulation of these quantities.

The chief linear algebra operation was a decom-
position of JTJ . Though this operation was not
so critical, we replaced the Numerical Recipes rou-
tine with the LAPACK routine DSYEV. The most
expensive part of the calculation is evaluation of
the function and derivative quantities rT r, JTJ and
JT r, at a given parameter vector x. As mentioned
above, LaueView evaluates these terms r2i , rirri,
and rri(rri)

T in sequence for i = 1; 2; : : : ;m and
accumulates the quantities krk2, JT r, and JTJ .

A parallel version of this process proceeds in the
obvious way: The indices i = 1; 2; : : : ;m are \dealt
out" to the P available processors. Each proces-
sor forms its own partial sums, and a global sum-
mation operation then recovers rT r, JTJ and JT r.
The other operations associated with LaueView, in-
cluding computation of the candidate Levenberg-
Marquardt step, take place concurrently (and redun-
dantly) on all processors; their relatively low compu-
tational cost makes it not worthwhile to parallelize
them.

5. Computational Results.

We report on the e�ects of the improvements in
LaueView on a real data set from a crystal of pho-
toactive yellow protein, for which structure results
obtained with LaueView2.5 are presented in [1].

Table 1.1: CPU Times (seconds) for LaueView 2.5
and 3.1 on SGI Reality Monster, for Six Runs with
Di�erent Starting Points and Di�erent Fixed Param-
eters

LaueView2.5 LaueView3.1 (n� = 32)
time (s) optimal f time (s) optimal f

2096 1045598 191 1017473
3725 485746 247 509350
7700 576934 386 591343
failed 559 492059

not tested 1617 491801
10841 633712 1171 610565

The value ofm for this set is approximately 120; 000,
while the number of parameters n is small, between
about four and seventy in our experiments. Numer-
ical experiments were conducted from a number of
di�erent starting points, with di�erent parameters
being allowed to vary on each run.

We performed experiments on two computational
platforms. The �rst was a single processor of
a SGI Onyx2 Reality Monster running IRIX 6.4,
equipped with sixteen MIPS R10000 processors and
4 GB of memory. The second was an 80-node IBM
SP in which each node is an RS/6000 workstation
equipped with a 120 MHz P2SC chip and 256 MB of
memory. Enhanced �le systems were used on both
systems, because the code needs to write (and in
some cases to read) very large �les.

Table 1.1 summarizes performance on the SGI ma-
chine. LaueView2.5 is the original version of the
code prior to numerical improvements, while Laue-
View3.1 incorporates all the improvements described
above. In all cases, LaueView3.1 obtained compara-
ble �nal objective values to the original code, while
greatly improving the robustness and e�ciency of
the computation. The larger functions values may
be attributable in part to our use of a di�erent
parametrization of the � curve (using fewer param-
eters), and may also be due to the code identifying
a di�erent local minimizer.

Results of the parallel code running on the IBM
SP are presented in Table 1.2. We show results on
the �rst and last runs from Table 1.1. LaueView3.1
was used with the number of basis functions set to
64.
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Table 1.2: Parallel Performance of LaueView3.1 on
IBM-SP Multiprocessor

Procs. Time (s) Speedup (excl. output)

1 551
2 377 1.5 1.6
4 274 2.0 2.6

1 4443
2 2522 1.8 1.8
4 1334 3.3 3.5
8 765 5.8 6.5
16 485 9.2 11.3
32 351 12.7 17.3

Since we parallelized only the critical section of
the code in which the matrix JTJ and the vector
JT r are evaluated and accumulated, the speedups
are considerably less than linear in the number of
processors; the non-parallel parts of the computa-
tion (particularly the 100 seconds spent in writing
the output �le to disk) become relatively more signif-
icant as the number of processors is increased. How-
ever, the wall-clock time is reduced considerably on
multiple processors. The �nal column in Table 1.2
indicates the speedup �gure obtained when the 100
seconds spent on writing the output �le is subtracted
from the total CPU time for each run. A more so-
phisticated parallel code could parallelize this op-
eration by having each processor write a section of
the output to its own �le, while any subsequent run
could read these �les in parallel, in an analogous
fashion. We feel that the run-time advantages ob-
tained with our current parallelization technique are
su�cient to meet the needs of experimentalists for
faster turnaround time, however.
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Comments from the Chair
and Editor

After a rather lengthy interval, we are happy to
say the SIAG/OPT Newsletter is back with a won-
derful set of articles concerned with applications of
optimization. We will carry this application theme
forward with the next issues. Indeed, the very next
issue will be focused entirely on optimization applied
to the problems of �nance. We aim to release this
issue before the SIAM Optimization meeting in At-
lanta where Coleman and Dembo (CEO, Algorith-
mics) will o�er a short course on Financial Opti-
mization on May 9.
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For more information on the confer-
ence, check out the web site for the
Sixth SIAM Conference on Optimization,
http://www.siam.org/meetings/op99/index.htm.
We would like to remind you that this is your

newsletter. Please consider submitting an exposi-
tory article on your favorite optimization applica-
tion (or any other interesting aspect of optimiza-
tion.). Such articles can be very useful in spread-
ing the word about optimization and its importance,
throughout the SIAG/OPT community and beyond.
They can also be wonderful classroom aids, help-
ing students see the importance of optimization and
applied mathematics more generally. Please con-
tribute.
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