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Introduction

• Aim: To develop low dimension parametric (deterministic) 
models of complex networks
– Use compressive sensing (CS) and multiscale analysis to do 

so
• Exploit the structure of complex networks (some are self-similar 

under coarsening)

• Motivation:
– Graphs often form the understructure over which dynamics 

occur 
• e.g., chemical reactions, epidemiological processes, cascading 

failures, etc
– Dynamics are easy to observe, but the graphical structure 

unknown
– A low-dimension model of a graph allows its “discovery” by 

fitting to data
• Inverse problem, network discovery, estimation of graphs etc



Today’s talk

• Can compressive sensing actually work?
– Under what circumstances?

• Some assumptions/characteristics of the networks
– Networks will be small – O(100) nodes

• In inverse problems, not enough info to fit detailed models
– Networks will be assumed to have densely connected 

“cliques” of different sizes
• Leads to “blocky” adjacency matrices

• Outline
– Compressive sensing – what is it?

• Sampling technique
• Reconstruction technique

– Test cases 
• 2 synthetic networks
• Results – different levels of sampling/order reduction and 

reconstruction fidelity



What is compressive sensing?

• A technique to efficiently encode/decode a random vector x 
of length N
– x can be a signal, a time-series
– The process is lossy – the decoding is approximate

• Efficiency of representation rests on the presumption that 
the information content of the signal is small
– i.e., a sparse representation exists for x
– In conjunction with efficient sampling, only a few samples are 

needed
• “Sampling” a signal means projection on a sampling basis 

set ψi

– y is the “signature”; yi are the projections of x
– Under certain conditions size(y) ~ log(N) 

xy Ψ=



When and why is Y compressive?

• If x can be described sparsely in an orthogonal basis set 
(e.g., wavelets), Φ, then the basis weights can be sampled 
directly 

– Where only K elements of s are non-zero. K << size(s) = N

• An efficient sampling of x collects information on all 
elements of s per projection
– Can be done ifψi are random vectors 

• e.g., chosen from a high dimensional sphere (uniform spherical 
ensemble)

– Ψ is then an orthogonal matrix

• Under these conditions

sysx Ψ=Φ= ,
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Decoding - reconstructing x from Y

• Canonically, decoding is performed via l1 minimization

– Exact solutions (e.g., basis pursuit) too computationally 
expensive, so usually an approximate form is solved in 
practice

• Our algorithm, called StOMP (Stagewise Orthogonal 
Matching Pursuit)
– Donoho et al, 2006 (preprint)
– Iteratively finds the non-zero elements of s
– Number of iterations are bounded

• But assumes that s is sparse
– Computational cost comes from the pseudoinverse of Ψ
– Suitable for large problems
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Extending Compressive Sensing to 
networks

• Based on the CS of adjacency matrices
• We expect that the rows/columns of an adjacency matrix 

can be re-ordered to create a “blocky” adjacency matrix
– Alternatively, node in a clique should have similar node-ids

• Networks showing self-similarity will show structure within 
the blocks

• Exploiting multi-resolution:
– Decompose the adjacency matrix on a wavelet basis

• In our case, Haar wavelets
– Haar wavelet coefficients stored and treated hierarchically

• Resolution by resolution, with no inter-resolution dependence 
modeled or exploited

– Non-zero wavelet coefficients at each resolution will be sparse
– Sampling and reconstruction too are performed hierarchically



A graph and its multiscale decomposition - I

256 nodes, 2562 wavelet coefficients

The network

Adjacency
matrix



A graph and its multiscale decomposition - II

256 nodes, 2562 wavelet coefficients

Wavelet coefficients at different 
resolutions

Histogram of coefficient 
values

(log10(Frequency))



Sampling issues

• The number of wavelet coefficients at level l is 4l

• How many samples per level?
– Generally expressed as a fraction of 4l

– Should this fraction vary with levels
• Some observations

– Sampling has to be minimal at high resolutions
• i.e. fine detail cannot be captured
• Emphasis on “blockiness”, structure should be evident at a certain 

resolution
– All wavelet coefficients at coarser resolutions can be retained

• So CS can be expected to work for graphs that are 
somewhat dense
– Will not work for very sparse graphs



Tests

• 2 synthetic directed graphs, of 256 nodes.  Average degree of 23 & 
17

• Sample (to various degrees) and reconstruct
• Performance wrt  number of samples and sparsity of graph

Network I Network II



Test I(a) – fine sampling (60%)

• Network I, with 256 nodes and 5914 
edges
– Needs 2*Nedges to store

• Reconstruction with ~60% sampling

Original Recons-
truction

No. of 
samples

11,824 7463
(~60%)

Average 
degree

23.1 27.2

Fiedler
Value

1.85 1.91

No. edges 5914 6924
Degree distribution

Eigenvalues of the Laplacian



Test I(a) – comparison of nets

Original

Reconstruction



Test I(a) – analysis of differences

• Difference of adjacency matrices
– Small differences around the blocks
– Normalized error (Frobenius norm) ~ 42%
– Red edge: false negative; Blue edge: false positive



Test I(b) – coarse sampling (25%)

• Network I, with 256 nodes and 5914 
edges
– Needs 2*Nedges to store

• Reconstruction with ~ 25% sampling

Original Recons-
truction

No. of 
samples

11,824 2478
(~25%)

Average 
degree

23.1 44.6

Fiedler
Value

1.85 1.81

No. edges 5914 11424
Degree distribution

Eigenvalues of the Laplacian



Test I(b) – analysis of differences

• Difference of adjacency matrices
– Significant structural  differences
– Normalized error (Frobenius norm) ~ 100%
– Red edge: false negative; Blue edge: false positive



Test II - a sparser net

• Network II, with 256 nodes and 4426 
edges

• Reconstruction with ~ 85% sampling

Original Recons-
truction

No. of 
samples

8852 7589
(~85%)

Average 
degree

17.29 20.1

Fiedler
Value

1.08 1.54

No. edges 4426 5144Degree distribution

Eigenvalues of the Laplacian



Test II – comparison of nets

Original

Reconstruction



Test II – analysis of differences

• Difference of adjacency matrices
– Small differences around the blocks
– Normalized error (Frobenius norm) ~ 40%
– Red edge: false negative; Blue edge: false positive



Summary of the tests

• Define: Average link probability = average degree / # of 
nodes

• For an average link probability of around 10%:
– 60% sampling gives excellent reconstruction
– 25% sampling leads to over estimation of average degree 

• i.e., the reconstructed graph is very coarse & lacks detail

• For an average link probability of around 7%:
– The technique requires too many samples (~85%) and is not 

competitive
• In general, matching the eigenvalue spectrum is easy

– Fiedler value less so, but getting to +/- 10% is possible
• Matching the degree distribution is harder

– 25% sampling does not do it
– 60% or higher does it, depending upon the average link 

probability



Summary and Conclusions

• CS provides a new way of sampling and reconstructing 
networks

• Approach based on multiresolution decomposition of the 
adjacency matrix and its efficient sampling

• Requires preprocessing of the adjacency matrix to make it 
“blocky”
– Biggest (combinatorial) algorithm challenge.

• Current CS reconstruction algorithm makes no use of the 
structure of a graph – very general (and so not very 
efficient/customized)
– Other model-based CS techniques exist, but not yet adapted to 

networks
– Obvious starting point for future work to increase the 

efficiency of reconstruction
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