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Introduction

« Aim: To develop low dimension parametric (deterministic)
models of complex networks
— Use compressive sensing (CS) and multiscale analysis to do
SO
e Exploit the structure of complex networks (some are self-similar
under coarsening)
* Motivation:
— Graphs often form the understructure over which dynamics
occur

e e.g., chemical reactions, epidemiological processes, cascading
failures, etc
— Dynamics are easy to observe, but the graphical structure
unknown

— A low-dimension model of a graph allows its “discovery” by
fitting to data

* Inverse problem, network discovery, estimation of graphs etc @ ﬁandial
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Today’s talk

« Can compressive sensing actually work?
— Under what circumstances?

« Some assumptions/characteristics of the networks
— Networks will be small — O(100) nodes
* In inverse problems, not enough info to fit detailed models

— Networks will be assumed to have densely connected
“cligues” of different sizes

* Leads to “blocky” adjacency matrices
e Outline

— Compressive sensing —what is it?
o Sampling technique
 Reconstruction technique

— Test cases
e 2 synthetic networks
* Results — different levels of sampling/order reduction and [@ Sandia
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at Is compressive sensing?

* A technique to efficiently encode/decode a random vector x
of length N

— X can be a signal, a time-series
— The process is lossy —the decoding is approximate
» Efficiency of representation rests on the presumption that
the information content of the signal is small
— I.e., a sparse representation exists for x

— In conjunction with efficient sampling, only a few samples are
needed

« “Sampling” a sighal means projection on a sampling basis

set
i y =YX

— yis the “signature”; y; are the projections of x
— Under certain conditions size(y) ~ log(N)
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en and why Is Y compressive?

 If Xx can be described sparsely in an orthogonal basis set
(e.g., wavelets), @, then the basis weights can be sampled
directly
X=®ds, y="Ws

— Where only K elements of s are non-zero. K << size(s) = N

* An efficient sampling of x collects information on all
elements of s per projection

— Can be done if y are random vectors

e e.g., chosen from a high dimensional sphere (uniform spherical
ensemble)

— Wis then an orthogonal matrix

e Under these conditions

National
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M =size(y) >cKlog(N/K) << N @ Sandia
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ecoding - reconstructing x from Y

e Canonically, decoding is performed via |; minimization
min|s| subjectto|y— Vs, <&

— Exact solutions (e.g., basis pursuit) too computationally
expensive, so usually an approximate form is solved in
practice

e Qur algorithm, called StOMP (Stagewise Orthogonal
Matching Pursuit)
— Donoho et al, 2006 (preprint)
— lteratively finds the non-zero elements of s

— Number of iterations are bounded
e But assumes that s is sparse

— Computational cost comes from the pseudoinverse of ¥
— Suitable for large problems
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A
ﬁending Compressive Sensing to

networks

 Based on the CS of adjacency matrices
* We expect that the rows/columns of an adjacency matrix
can be re-ordered to create a “blocky” adjacency matrix
— Alternatively, node in a clique should have similar node-ids
* Networks showing self-similarity will show structure within
the blocks
* Exploiting multi-resolution:

— Decompose the adjacency matrix on a wavelet basis
* In our case, Haar wavelets

— Haar wavelet coefficients stored and treated hierarchically

* Resolution by resolution, with no inter-resolution dependence
modeled or exploited

— Non-zero wavelet coefficients at each resolution will be sparse
— Sampling and reconstruction too are performed hierarchically
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Adjacency
matrix

Adjacency matrix - original graph
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256 nodes, 2562 wavelet coefficients
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Resolution level

A graph and its multiscale decomposition - Il

Wavelet coeflicients from the Haar transform of the adjacency matrix
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Sampling issues

e The number of wavelet coefficients at level | is 4

« How many samples per level?
— Generally expressed as a fraction of 4
— Should this fraction vary with levels

« Some observations

— Sampling has to be minimal at high resolutions
e i.e. fine detail cannot be captured

« Emphasis on “blockiness”, structure should be evident at a certain
resolution

— All wavelet coefficients at coarser resolutions can be retained

« S0 CS can be expected to work for graphs that are
somewhat dense

— Will not work for very sparse graphs
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Network | Network Il

» 2 synthetic directed graphs, of 256 nodes. Average degree of 23 &
17

 Sample (to various degrees) and reconstruct

* Performance wrt number of samples and sparsity of graph @ Sandia
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Test I(a) — fine sampling (60%)

* Network I, with 256 nodes and 5914 -

edges

— Needs 2*N to store

edges

 Reconstruction with ~60% sampling  degree
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Test I(a) — comparison

of nets

Adjacency matrix - original graph

2
S
T
.

Original i
rigina : - . :

i

o

3 -

3 =

st " - .

-
. H
Ny
200 5 ]

Tevant Mlasdan

Adjacency matrix - reconstruction with 7463 samples

50 100 150 200 250

- B
501 *
-
- [
. - .
100~

150
1

Reconstruction

Source Nodes

" m " " &
250( =

Target Nodes




\

Test I(a) — analysis of differences

Adjacency matrix - difference in reconstruction with 7463 samples

Source Nodes

50 100 150 200 250
Target Nodes

» Difference of adjacency matrices
— Small differences around the blocks
— Normalized error (Frobenius norm) ~ 42%
— Red edge: false negative; Blue edge: false positive @ Sandia
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Test I(b) — coarse sampling (25%)

* Network I, with 256 nodes and 5914 -

edges

Needs 2*Ngyq4es tO StOre

 Reconstruction with ~ 25% sampling  degree
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Test I(b) — analysis of differences

Adjacency matrix - difference in reconstruction with 2478 samples

Source Nodes

50 100 150 200 250
Target Nodes

» Difference of adjacency matrices
— Significant structural differences
— Normalized error (Frobenius norm) ~ 100%
— Red edge: false negative; Blue edge: false positive @ Sandia
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Test Il - a sparser net

* Network I, with 256 nodes and 4426 -

edges

 Reconstruction with ~ 85% sampling
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Comparision of degree distributions
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Test Il — comparison of nets

Original

Reconstruction
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Adjacency matrix - original graph
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Test Il —analysis of differences

Adjacency matrix - difference in reconstruction with 7463 samples

Source Nodes

Target Nodes

» Difference of adjacency matrices
— Small differences around the blocks
— Normalized error (Frobenius norm) ~ 40%

— Red edge: false negative; Blue edge: false positive Sandia
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ummary of the tests

* Define: Average link probability = average degree / # of
nodes

* For an average link probability of around 10%:
— 60% sampling gives excellent reconstruction

— 25% sampling leads to over estimation of average degree
 i.e., the reconstructed graph is very coarse & lacks detail

* For an average link probability of around 7%:

— The technique requires too many samples (~85%) and is not
competitive

* In general, matching the eigenvalue spectrum is easy
— Fiedler value less so, but getting to +/- 10% is possible
 Matching the degree distribution is harder
— 25% sampling does not do it
— 60% or higher does it, depending upon the average link
- Sandia
probability @ National
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ummary and Conclusions

 CS provides a new way of sampling and reconstructing
networks

 Approach based on multiresolution decomposition of the
adjacency matrix and its efficient sampling

* Requires preprocessing of the adjacency matrix to make it
“blocky”
— Biggest (combinatorial) algorithm challenge.
» Current CS reconstruction algorithm makes no use of the

structure of agraph —very general (and so not very
efficient/customized)

— Other model-based CS techniques exist, but not yet adapted to
networks

— Obvious starting point for future work to increase the
efficiency of reconstruction
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