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Abstract

We present results from a preliminary investigation into the use of Bayesian inference
methods to characterize the genesis of epidemics, caused by natural and unnatural means,
based solely on a short (3-4 days) time-series of diagnosed patients exhibiting symptoms. In
particular, we infer the number of index cases, the time of infection and the dosage of the
pathogen, under the following assumptions: (1) the epidemic has a single-focus epidemic (2)
all the infected people receive the same dosage and (3) the effect of contact spread of the
disease is negligible in the data used for the inference. The estimates of the parameters are
developed as PDFs (probability density functions). Smallpox and anthrax are used as the
pathogens in this study. The methods are tested against simulated epidemics as well as the
anthrax outbreak of Sverdlovsk in 1979.
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A Bayesian method for characterizing
distributed micro-releases: I. The

single-source case for non-contagious
diseases

1 Introduction

Pathogens may be introduced into a population via natural or unnatural means. Naturally, they may
infect a person via contact between an infected human or, in some cases, domesticated animals.
Alternatively, they may be introduced via an atmospheric release of an aerosol preparation in a
military or criminal attack - large bio-warfare programs existed in both the Soviet and NATO
countries before the 1972 Biological Warfare Convention [1, 2] . In many cases, such introductions
may not be detected via environmental sensors - examples include small releases which do not
travel far, releases where the formulation is coarse (and heavy) enough to precipitate quickly and
releases in areas which are not well instrumented with sensors. In such cases, the first intimation
of the attack will be the definitive diagnosis of the first patient - but by then the pathogen may have
established itself in the population. Thus the ability to infer the characteristics of the introduction
plays an important part in formulating a medical response. The characteristics can also serve as
the initial condition for various epidemic models which can then be used to predict the evolution
and spread of the disease in a population as well as its ramifications on the society.

The two cases – natural and unnatural introduction – place slightly different requirements of the
inference process. In case of a natural epidemic (of a communicable disease), the initial infecteds
(the index cases) are expected to be few. If the disease has a contagious asymptomatic phase (e.g.
H5N1, “bird flu”), the relevant question, when a definitive diagnosis is made, is how many infected
people (very few of them would be index cases) exist in the population. In case of an aggressive
attack (which we will refer to henceforth as a bioterror attack or BT attack), the relevant questions
involve estimating the number of index cases, the time of the attack as well as the doses received
by the infected people. The reasons for these different requirements stem from the pathogens of
choice for BT attacks as well as the mechanisms of release. BT attacks are meant to infect as
large a population as possible, and the ratio of index cases to people who “caught” the disease by
contact will not be less than one, at least in the early days of the epidemic when such inferences are
of operational importance. Also most BT pathogens (e.g. smallpox, anthrax, plague etc [1]) are
either non-contagious, act slowly or have symptomatic contagious phases whereby the contagious
person can be quarantined. The time of the attack is critical to determining the location of the
attack by tracing the movement of the diagnosed patients back to the estimated attack time. The
distribution of doses among the infected population is determined by the mode of release (indoor
versus outdoor) - it varies inversely with distance from the point of release, and in an indoor
context, is affected by circulation. Further, BT attacks could be carried out as a set of small
releases, staggered in time and space - the small size reduces detectability and allows low-quality
formulations to be used. In such a case, one would have to infer the number of distributed attacks
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and the size, time and dose-distributions corresponding to each of them.

Drawing these inferences can be challenging - the only two phenomena that can be exploited for
this purpose are (1) the distribution of incubation period of the disease, which in some cases is de-
pendent on the dose received and (2) the “mixture” of index and non-index cases in the diagnosed
patients. To be relevant in an operational, consequence management sense (as opposed to foren-
sics), these inferences have to be drawn early in the epidemic; thus a time-series of patient data, 3-4
days long, should be considered the norm. Thus the inferences are expected to be rather inaccu-
rate / uncertain and quantifying this uncertainty becomes an inherent requirement of the inference
process. This uncertainty can be reduced if one has prior beliefs (gathered via processes that are
independent of the epidemic) regarding the values of the quantities being evaluated. Including
them into the inference approach in a mathematically rigorous way contributes to its robustness.

In this report, we explore how such BT attacks may be characterized. This preliminary study
targets single-focus attacks (i.e. single release) where we also assume that (1) the disease is non-
contagious or the delay in the outbreak of secondary cases is long enough that only the index cases
are observed in the period of interest and (2) the dose received by the index cases is a constant. We
study how the inferences of the size, time and dosage behave with the size of the attack and the
time-resolution of the observed data i.e. if the patient data were to be collected in 6-hour intervals
instead of 24 hours, would the inferences be substantially more accurate? Smallpox and anthrax
are used in the study. We adopt a Bayesian inference approach since (1) it allows us to develop
the inferred quantities as PDFs (probability density functions), thus quantifying the uncertainty
and (2) it allows a straightforward accommodation of prior beliefs using Bayesian priors. We
will essentially study the suitability of Bayesian methods to deliver estimates within our self-
imposed limit of 4 days (of the patient time-series) and investigate how these may be improved
e.g. with better resolved data as well as possible causes of inaccuracy e.g. noisy data. The results
of this study will indicate whether more detailed questions (e.g. dose-distributions, multiple attacks
etc) can be answered satisfactorily by such an approach as well as help identify a few promising
approaches to enhance the method’s efficiency.

2 Prior Work

Prior work on the topic of inferring the characteristics of an attack are best described under two
headings

1. the problem of inference and

2. the model of the disease used for inference. In our case, we will limit the discussion to
smallpox and anthrax.

The exact question of estimating the size and time of an attack from a time-series of patient data
seems to have been studied little. Walden and Kaplan [3] developed a Bayesian formulation which
they tested on a low dose anthrax attack corresponding, roughly, to the Sverdlovsk outbreak [4]
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of 1979, using an incubation period model by Brookmeyer et al [5]. The formulation is also
valid for communicable diseases as long as they have a long, non-contagious incubation period
e.g. smallpox. They also demonstrated the use of Bayesian priors - prior belief in the size of the
attack N - to develop a smooth PDF for N, even for a small infected population (N = 100) and a
time-series, 5 days long, with data collected on a day-by-day basis.

An alternative (likelihood maximization) method was employed by Brookmeyer and Blades [6]
to infer the size of attacks in the 2001 anthrax attacks in the US [7], preparatory to estimating
the reduction of casualties by the timely administration of antibiotics. The inference process was
difficult given the small number of symptomatic patients (10 infectees in 3 separate attacks). They
also used the incubation period model from [5].

All inference studies need a model of the disease in question - in the studies described above, a
model of the incubation period sufficed since contact spread of the disease was not an issue (anthrax
is not contagious) or that the long, non-contagious incubation period guaranteed that the second
generation of infectees would appear long after the first symptomatic patient (e.g. smallpox). A
significant amount of work has been done on the incubation period of anthrax. Brookmeyer et al [5]
developed a low-dose incubation period model applicable to the Sverdlovsk outbreak; their more
recent work, based on a competing risks formulation, includes dose-dependence [8]. A more em-
pirical approach, but based on significantly more data, was done recently by Wilkening [9], where
he also compared four different models, including the dose-dependent one by Brookmeyer [8] (re-
ferred to as Model D). While Wilkening’s Model A agreed with Model D at the high-dose limit,
their low-dose behavior was different.

The question of whether a person exposed to a number of spores will actually contract the disease
is a separate question that will not be addressed in the report. The problem of estimating the
probability of infection from S spores was addressed in [8] as well as by Glassman [10].

The modeling of smallpox poses very different challenges because of the lack of a good non-human
primate model for experimental studies. Recently, Jahrling et al [11] have reproduced human-
like response in cynomolgus macaques using immensely high doses of variola major; previous
studies [12] were largely qualitative or statistically insufficient. In the absence of such studies,
almost all our information comes from the records collected during the WHO Eradication Pro-
gram [13, 14]. These are strictly low-dose behaviors. Meltzer et al [15] have collated this data into
a form amenable to modeling. Eubank’s detailed simulations of a smallpox epidemic [16] makes
use of the data in [13, 14] and is probably the most sophisticated to date. For the purposes of this
study, we will construct a “consensus” model in Appendix A based largely on [15, 11]. We will
not model the various clinical forms of smallpox [12] in the interest of simplicity; further, there is
no data based on which we can segregate and separately model the various clinical forms.
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3 Formulation of the problem

Consider an attack at time τ where N people are infected, with each of the N people receiving the
same dose D of the pathogen. N, D and τ are unknown. Assume, too, that the attack is not caught
on environmental sensors. Also assume that none of the data being used in the inference process
was generated due to contact spread of the disease i.e. all the patients are index cases.

1.0

C(t)

t

Figure 1. CDF of an incubation
period distribution.

Phenomenologically, the N people will incubate the disease. In-
cubation period follows a distribution that is dose-dependent
and after a period of time, the outliers in the population will be-
come symptomatic. They will be diagnosed in the hospitals and
the date of showing symptoms (usually a day) will be recorded.
So for a few days M (say 3 - 5 days) we can expect

1. a series ti, i = 0 . . .M of times, perhaps the end points 24-
hr intervals, when patients’ symptoms are observed

2. the time-series ni, i = 0 . . .M of new patients who turned
symptomatic between ti−1 and ti

The incubation period of a disease follows a strict distribution,
often log-normal [17] (see Fig. 1). Some people come out of

incubation and show symptoms early, others later. If N people are infected, the number of people
showing symptoms will vary over time, approximately similarly to the CDF (exactly in the limit
as N → ∞). So, on a person-by-person basis, this can be modeled as

1. each person, after infection, has a probability of showing symptoms, C(t), which asymptot-
ically approaches 1 as t → ∞. C(t) is the cumulative distribution function or CDF.

2. its derivative P(t) = dC
dt is the probability density function, PDF. It can be derived (e.g. from

an experimental study) by plotting the histogram of the number of new symptomatics per a
given time interval (e.g. 24 hours).

Thus,

• A person infected at time t = 0 with dose D will show symptoms by time t with probability
C(t,D).

• the corresponding survival probability is Psurv(t,D) = 1−C(t,D).

We can state the problem as such: Given a time series (ti,ni), i = 0 . . .M of patients showing
symptoms over a few days M, estimate (N,τ,D) from the data. ni patients are assumed to have
developed symptoms over the time interval between ti−1 and ti.
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Let a total of L patients develop symptoms over M days i.e. L = ∑M
i=0 ni.

Thus the number of infectees yet to show symptoms is N −L

The probability that (N−L) infectees will not exhibit symptoms by day M is {Psurv(tM−τ,D)}N−L

The probability that ni patients will exhibit symptoms between time ti −∆t and ti, (where ∆t =
ti− ti−1, i 6= 0 is the length of the data collection interval) is {C(ti− τ,D)−C(ti−∆t − τ,D)}ni

The number of ways L people can be chosen out of a total of N infectees is

N!
L!(N −L)!

The number of ways L people can be divided into the sequence n0,n1, . . .nM is

L!
n0!n1! . . .nM!

Therefore, the likelihood of observing a {ti,ni}, i = 0 . . .M series given a (N,τ,D) attack is

L({ti,ni}, i = 0, . . .M|{N,τ,D}) =
N!

L!(N −L)! ×
L!

n0!n1! . . .nM! ×{Psurv(tM − τ,D)}N−L×
M

∏
i=0

{C(ti− τ,D)−C(ti−1− τ,D)}ni

=
N!

(N −L)!∏M
i=0 ni!

×{Psurv(tM − τ,D)}N−L×

M

∏
i=0

{C(ti− τ,D)−C(ti−1− τ,D)}ni (1)

The likelihood in Eq. 1 now needs to be incorporated into an expression that allows inference. We
start with Bayes’ rule [18]. Assume that there exists a stochastic forward model that, given an
input x, produces an output y. Since the model is stochastic and the output y is not guaranteed, one
considers the probability of observing y given x i.e Π(y|x). Let the probability of having x as an
input itself be Π(x) and y as an output be Π(y). Then by Bayes rule

Π(x|y)Π(y) = Π(y|x)Π(x) (2)

In our case the time series (ti,ni) forms the output/observables y while x = (N,τ,D). We are
interested in guaging Π(x|y). Eq. 1 gives Π(y|x). We construct Π(x) by exploiting the fact that N,
τ and D are uncorrelated with each other and the PDFs expressing their distributions can simply be
multiplied to give

Π(x) = πN(N)πτ(τ)πD(D)
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where πN(N), πτ(τ) and πD(D) are PDFs encompassing prior beliefs in N, τ and D. Such an
approach is flexible - a near-certainty regarding the value of a certain parameter e.g. N = N0 can
be incorporated using πN(N) = δ(N −N0) while a belief that NS ≤ N ≤ NS can be incorporated as
a uniform distribution πN(N) = U(NS,NE). The expression for the inferred quantities (N,τ,D),
given the observed data {ti,ni}, i = 0, . . .M, is

Π({N,τ,D}|{ti,ni}, i = 0, . . .M) =
L({ti,ni}, i = 0, . . .M|{N,τ,D})πN(N)πτ(τ)πD(D)

Π({ti,ni}, i = 0, . . .M)

= Π(x|y) (3)

For the rest of the proposal, we will use uniform distributions with finite supports for (N,τ,D), and
probe the entire (N,τ,D) space within the supports to determine promising values for (N,τ,D).
We do this in a brute-force manner by specifying the starting and ending values for (N,τ,D) as
well as increments and exhaustively evaluating Π(N,τ,D|{ti,ni}, i = 0, . . .M) in the space. These
values are then normalized to get P̄(N,τ,D)

P̄(N,τ,D) =
Π(N,τ,D|{ti,ni}, i = 0, . . .M)

R N=NE
N=NS

R τ=τE
τ=τS

R D=DE
D=DS

Π(N,τ,D|{ti,ni}, i = 0, . . .M)dNdτdD
(4)

The subscripts S and E refer to the starting and ending values of the various attack characteristics.
The normalized probability Π̄ can then be marginalized to provide PDFs for the attack character-
istics:

g(N) =
Z

τ

Z

D
P̄(N,τ,D)dDdτ

g(τ) =
Z

N

Z

D
P̄(N,τ,D)dDdN,

g(D) =

Z

τ

Z

N
P̄(N,τ,D)dNdτ (5)

In order to complete the formulation, we need to state C(t,D) for smallpox and anthrax. Anthrax
is modeled with a log-normal incubation period with median and standard deviation dependent on
the dose [9]. Using CA(t,D) as the CDF for anthrax

CA(t,D) =
1
2

[

1+ er f

(

ln(t/t0)√
2S

)]

, t0 = 10.3−1.35log10(D), S = 0.804−0.079log10(D) (6)

The CDF CS(t,D) for smallpox, which is modeled as a normal distribution and does not include
dose-dependence (Appendix A), is

CS(t,D) =
1
2

[

1+ er f

(

t −µ√
2σ

)]

, µ = 15, σ = 2 (7)
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In the next section, we will evaluate the utility of Eq. 5 for inferring the characteristics of an attack
given a small time-series. We will evaluate how it behaves for small and large N and D and how
long a time-series is required for meaningful inferences. It is expected that large N and D should
help inferences (large statistical populations and reduced variability). We will also investigate
the possibility of lengthening the time-series by collecting data (symptomatic patients) on a finer-
grained time resolution e.g. 6 hour intervals instead of 24 hours.

We will simulate BT attacks using the incubation period in Eq. 6 and the smallpox model in Ap-
pendix A. For small smallpox attacks, we can expect a few second generation infectees to be
included in the data for inferences, thus invalidating one of our assumptions. This can be used to
test the robustness of the inference approach.

4 Test cases

In this section we will investigate the utility of the formulation in Sec. 3 in inferring attack char-
acteristics. We will investigate the effect of the size of the infected population and the effect of
having a fine-grained time-series, while following our restriction of a small observation duration of
3-4 days. We will investigate smallpox and anthrax (via simulations) and address the Sverdlovsk
outbreak [4] of 1979.

4.1 Smallpox attacks

A model of smallpox is described in Appendix A. Smallpox has a long incubation time. For a large
attack, the first 3-4 days of the epidemic will yield symptomatic patients who are almost certainly
the index cases; in small attacks, a few second generation patients may also appear. Since small
attacks are unlikely to yield copious fresh cases every day, even a few second generation cases
can seriously derail the inference process. This is a weakness of the current model which depends
entirely on the incubation period and ignores all processes related to contact spread of the disease.

In Table 1 we present data on new patients appearing on a day by day basis. Case C, the smallest
attack, has some second generation cases on Days 4 and 5. These results were generated using the
“non-deterministic” method described in Appendix A. These stochastic runs will generate different
time-series if run with a different stream of random numbers; however, these differences should
not change the inference. This independence of the inferences from the particular realization we
consider is critical to its applicability in real-life scenarios.

In Fig. 2 we plot P̄(N,τ) as given by Eq. 4 on Day 3 for the Case A in Table 1. Marginalization
in each direction provides the PDFs for N and τ. The development of the PDFs over time is also
shown in Fig. 2 (below); by day 2 we get a multimodal distribution for N which, had a good
prior been available, could have significantly simplified the inference - the peaks are quite distinct.
PDFs for day 3 and 4 still have an ambiguity (multiple peaks) though by day 5, the PDF is quite
unambiguous. However, by day 3 we are within an order of magnitude of the correct answer. No
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Figure 2. Above: The plot of P̄(N,τ) as given by Eq. 4 on day 3 for the Case A in Table 1. Blue
indicates P = 0; red maps to large numbers (though, of course, less than 1). The inlaid plots of
PDFs of τ and N show the marginalization at work. Below: The PDFs of N, the size of the attack
and τ, the time of attack developing as more data becomes available. The domain −20 ≤ τ ≤ 0 and
10 ≤ N ≤ 20000 was probed.
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Figure 3. The PDFs for N and τ for Case B (above) and Case C (below). The plots for Case C are
not shown for Days 4 and 5 since the data some second generation infectees which invalidated the
inference process.
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such ambiguity is seen in the PDF for τ; by day 1 the PDF peaks around -7 (seven days before
the first symptomatic patient), which agrees with the results in Table 1. In Fig. 3 we plot the
PDFs for Case B and C. The behavior seen in Case A holds true for Case B, though τ converges
slightly slowly. Ambiguity, in the form of multimodal PDFs are seen for N; the data indicates
that uncertainty in the size of N given the uncertainty in τ. An early attack of a smaller size can
produce a signature similar to a larger, though recent attack. This can also be seen in Table 1,
where the time-series from the three attacks vary very little from each other. The behavior for
Case C, which has a small population of infected people, is different. Note that the vertical axis
for the characterization of N is logarithmic; the characterization of the attack by day 3 is quite
clear. However, the characterization of τ is largely incorrect till day 3. The results for day 4 and
5 are not plotted since all the values of P̄(N,τ) were close to zero. This is because the data was
corrupted by a few second generation infectees and consequently did not fit into the model of
an incubation-based inference. While the quantification of the ratio of the index cases to second
generation cases has not been done in the study, it is clear that this inference process is sensitive to
such contamination.

Day Case A Case B Case C
0 2 1 2
1 1 1 5
2 14 3 10
3 51 15 10
4 164 42 31
5 414 88 21
N 10,000 1,000 100
τ -7 -8 -11

Table 1. Time series from 3 scenarios. The actual (N,τ)
values are also provided.

Given that the smallest attack (Case C)
has the most difficult inference task,
we redo the inference with data col-
lected on a 6 hour rather than daily
basis. The correct values for (N,τ)
are (100,−10.75). The time-series
is {2,0,0,1,1,3,3,3,1,3,0,4,5,1,7,6,5,
3,6,4,8,3,3}. The PDFs for N and τ are
in Fig. 4. Comparing them to Fig. 3 we
see that the PDFs are generally smoother,
and the variation of the PDFs with increas-
ing amounts of data is more predictable.
Also, τ is estimated more accurately. Thus,
even though we do not use more data (i.e.
we do not go beyond day 3), the Bayesian
method exploits the structure in the high-
resolution (i.e. 6 hour collection interval)
data to arrive at “crisper” inferences. This
relates directly to efforts (using syndromic surveillance and other techniques) to collect and pro-
cess data quickly - if the data is collected at a finer resolution, inferences can be greatly enhanced
without necessarily asking for more data.

4.2 Anthrax attacks

The incubation period for anthrax shows a distinct dependence on the dose (see Eq. 6) - thus an
anthrax attack presents us with the possibility of inferring D the dose, along with N and τ. This
leads to a more difficult problem - while the data is limited (3-4 days), the number of “degrees of
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Figure 4. The PDFs for N and τ for Case C with data collected on a 6 hour interval.

freedom” increases from 2 to 3. As in Sec. 4.1 we simulate a number of attacks and collect the
time-series; these are then used to estimate (N,τ,D). We make the simplifying assumption that all
infected people get the same dose of D spores each.

Table 2 contains the time-series for 6 different attacks. These are also stochastic runs, based on
the incubation period distribution (Eq. 6). The evaluation of P̄(N,τ,D) is done in a 3D space and
a figure akin to Fig. 2(top) would involve visualizing a 3D space or viewing isosurfaces of P̄. We
marginalize the distribution to provide PDFs of N, τ and D. These are plotted in Fig. 5 and 6. From
Fig. 5 it is clear that it is difficult to infer the dosage for small attacks; even at high-dose attacks,
the dosage PDF is too broad for much use. The observation also holds true for τ for the low-dose
D = 1 attack. Only the characterization of N is seen to be somewhat better. Matters are different
for large attacks (Fig. 6). Most characterizations are clean, though not necessarily unimodal. In
case of Case F, we see a distinct possibility of either N ≈ 10,000 or N ≈ 16,000 corresponding
to a D = 104 or D = 103 attack; the data up to day 3 supports both hypotheses quite well. Thus
Bayesian methods can provide one with ambiguous characterizations, dependent upon data.

We now reanalyze Case A and B by collecting data on a 6 hour basis. The time series for Case A is
{1,0,0,0,2,1,0,0,1,1,4,1,1,4,1,3,2,0,1,2,3,2,2} and for Case B is {1,0,1,0,2,1,2,2,2,2,6,
4,1,6,1,3,0,2,1,3,5,3,1}. The correct value for τ is -2.25 days in both cases. The PDFs are
plotted in Fig. 7. We do not see any marked improvement in the inferences. Thus the extra
structure in the data was simply not sufficient to overcome the uncertainty introduced by the small
size of the population and the low dose.
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Figure 5. PDFs for the log10(dose), τ and N, for cases A, B and C. These are all small attacks
(N = 100). Black lines include day 0 data only, red lines include day 1, blue lines include day 2
in addition and orange lines involve day 0, 1, 2 and 3. The “sequence” in the figures is the total
number of symptomatic as a function of time.
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Figure 6. PDFs for the log10(dose), τ and N, for cases A, B and C. These are all large attacks
(N = 10,000). Black lines include day 0 data only, red lines include day 1, blue lines include day
2 in addition and orange lines involve day 0, 1, 2 and 3. The “sequence” in the figures is the total
number of symptomatic as a function of time.
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R9cm

Day Case A Case B Case C Case D Case E Case F
0 1 1 4 27 12 9
1 3 8 11 189 187 327
2 7 6 23 431 565 1235
3 9 5 17 609 899 1850
4 3 11 15 654 985 1786
5 9 8 6 688 990 1403
N 100 100 100 10,000 10,000 10,000
τ -3 -2 -2 -1 -1 -1
D 1 100 10,000 1 100 10,000

Table 2. Time series from 6 anthrax attack scenarios. The actual (N,τ,D) values are also provided.
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Figure 7. PDFs for the log10(dose), τ and N, for cases A and B with data collected at 6 hour
intervals. These are all small attacks (N = 100). Black lines include day 0 data only, red lines
include day 1, blue lines include day 2 in addition, orange lines involve day 0, 1, 2 and 3. Green
lines include day 4, in addition.
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4.3 The Sverdlovsk outbreak

It is suspected that on April 2nd, 1979, there was an accidental release of a high-grade anthrax
formulation from a military facility in Sverdlovsk, Russia [4]. 70 people are believed to have
died [4, 5] and it has been estimated that 80 were infected [5]. This estimation was done under the
assumption that all the fatalities were due to inhalational anthrax. This outbreak provides a good
test case for our inference procedure. Wilkening [9] estimates that the average dosage was either
around 2-3 spores, based on his Model A, or around 300 spores based on his Model D, which is the
competing risks model of Brookmeyer [8]. Meselson [4] estimates 100-2000 spores as the likely
dosage.

The Sverdlovsk case presents significant challenges. It was a low-dose attack infecting fewer than
a hundred people. The first patient was detected on April 4th, 1979. The time-series of symptom
onset is available on a day-by-day basis in [19]. Around April 12th, tetracycline was administered
around Sverdlovsk; around the middle of April people were vaccinated. These prophylactic mea-
sures probably cured a few and increased the incubation period in others. Further, the data we
work with almost certainly contains some recording errors. Also, the data was reconstructed from
a variety of sources; public health records had been confiscated by the KGB [4]. Noisiness of the
data, the effect of prophylaxis (which is not modeled in our inference process), and the small size
of the infected population are expected to stress our inference process.

In Fig. 8 we plot the inferences for log10(dose), τ and N, based on the data in [19]. The time of
release τ was easy to infer. The PDFs for dosage are unclear, though after 19 days, it is clear that
it is a low-dose attack. The inference for N centers around 55 consistently though the inference
with 5 days of data (black line) severely underestimates N. The data in [19] shows a long tail
after April 18th, roughly after 5-6 days of the start of prophylaxis, when the antibiotics might be
expected to affect the progress of the disease, with a single person showing symptoms everyday.
Thus, inclusion of any data beyond Day 14 does not add much information but rather destabilizes
the inference process as the (unmodeled) effect of prophylaxis begins to matter more. However,
we are certainly within a factor of two of the correct value of N even with 10 days of data.

5 Conclusions

We have developed a promising, but still immature approach to inferring the characteristics of
a BT attack. Based on Bayesian inference, we have inferred the characteristics of attacks with
very little data (3-4 days). Large attacks (O(103) infectees) are easy to infer for size, time and
dosage; small attacks pose a harder problem because of the stochastic nature of the observed data.
Even with these weaknesses, the basic method was able to infer characteristics of the Sverdlovsk
outbreak with commendable accuracy. The method is lightweight and runs in seconds on a regular
workstation. Its simplicity allows it to be improved, enhanced and modified in innumerable ways;
as in most Bayesian approaches, these are achieved, most simply, by exploiting priors.

In the smallpox cases that we presented in Sec. 4.1, the inferences were done using the same
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Figure 8. PDFs for the log10(dose), τ (above) and N(below), for the Sverdlovsk attack. Black, red,
blue and orange lines denote inferences that use 5, 9, 14 and 19 days of data.
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model of smallpox as the attacks. However, the attack simulation being stochastic, the inferences
were drawn from only one realization of the attack and thus, strictly speaking, this was not an
inverse crime [18]. However, it does raise the question of what the inferences would be if the
characteristics of the pathogen used in the attack were markedly different from the model used
in the inference. While this study did not address this question, it is a valid problem and can be
approached in two ways:

1. perform a sensitivity study of the effect of discrepancy in the incubation period mean (or
median) and the standard deviation of the pathogen used for inference and in the attack. The
“distance” between the true PDF and the one developed when a discrepancy exists is one of
the quantities to measure.

2. Instead of evaluating sensitivities, we infer (N,τ,µ,σ) from the observed data. However,
we note that a good inference of four parameters will need a lot of data (or very helpful
characteristics like a large N) given our experience in estimating three parameters in the
anthrax tests in Sec. 4.2.

It is clear that many cases exist when fine-grained data (e.g. collected over 6 hour intervals rather
than on a daily basis) is helpful. However, in reality, finer-grained data will suffer more from
noise that more coarser grained collection, where measurement errors (reporting errors) will tend
to cancel each other out. While Bayesian methods are good at navigating random noise, it remains
to be seen if noisier, but finer grained data offer any advantage over cleaner coarse-grained data.
Alternatively, if this measurement noise can be modeled, we may be able to include it in the
inference process itself. This “filtering” idea might bear fruit if the time-series were long. Further,
we also need to conduct a verification study regarding the effect of realizations (of the stochastic
BT attack) on the quality of the inference.

One of the planned extensions of this model that is one where we try to infer the dose-distribution
following an attack, strictly from the time-series (ti,ni). Conceptually, under the constraint of a
single attack, this may be done by estimating the population N j in each of j = 0 . . .J dosage bins
which cover, in a non-overlapping manner, the entire dosage range. It is unclear, though, how
one chooses a representative dosage for a given bin and what the sensitivity of inferences are to
this choice. Being able to characterize the distribution can identify important signatures of the
release process - a low-dose distribution with large variations is indicative of an outdoor attack
with significant dispersion while a high-dose attack would indicate an indoors release. However
it introduces J parameters (N j, j = 0 . . .J) into the inference process, and given our experience in
Sec. 4.2, J will probably need to be a small number.

Another planned extension of this approach is that of discriminating between a single versus multi-
ple distributed attacks. In some cases, if the attacks are displaced only slightly (in time and space)
it will be impossible to discriminate between them. Conceptually, one could create the equivalent
of Eq. 4 dependent on (Nk,τk,Dk),k = 0 . . .K, where K is the number of attacks being considered.
However this dramatically increases the number of parameters to be estimated, and will require
significant amounts of data unless K is small. This approach is expected to be of relevance in
small, covert attacks.
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The most glaring shortcoming in this inference model is the lack of contact-spread processes in the
inference procedure. In order to augment Eq. 4 to deal with contagious diseases, we will need to
incorporate the probability of observing second generation infectees as a function of t. This PDF
can only be developed by running ensembles of stochastic epidemic simulations and projecting the
data on a suitable basis set so that the expression (which will involve at least N, R0 and the total
susceptible population) can be compactly represented. This is currently underway.
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A A mathematical model of smallpox

A.1 Introduction

This document lays out a mathematical model for the infection and evolution of variola major in a
well-mixed, homogeneous population. The index cases are generated via inhalation of aerosolized
virons while the subsequent transmission between humans is via contacts. Data for the pathogen-
esis (development of the disease in a host) shows large variations and consequently we will derive
some “consensus” values. Pathogenetic characteristics are strongly dependent on a variety of fac-
tors (health, sanitation and age being the most important); however data showing the functional
dependence of these characteristics on the factors are scarce or non-existent. Thus the pathogenetic
characteristics we “derive” via consensus are necessarily somewhat approximate. Note that these
numbers apply neither to Variola minor nor to the somewhat benign (!) version of variola major
that existed in Sahelian Africa. The data refers almost entirely to the virulent strain of variola ma-
jor found in the Indian subcontinent and draws heavily from the data of Rao [14], Mack et al. [20]
and Joarder et al. [21]

A.2 Epidemiology and pathogenesis

Smallpox (or more precisely variola major) is an Orthopox virus. Its principal mode of ingress into
a host is via the respiratory tract, though cutaneous invasion (as during inoculation via scarification
or variolation) is an oft-exploited (though inefficient) mode of infection. Inhalational infection
requires that the virons be agglomerated into particles < 1µm in size; larger particles are either
filtered out by the cilia in the respiratory tract or trapped and swallowed - an action that effectively
deactivates the virons. Sub-micron particles are generated by the aerosolizing effect of coughing
and sneezing of infected patients, provided that the virons exist in oral secretions. Once inside the
host, the virons establish themselves in the respiratory tract and incubate.

The incubation period varies (see Section A.4 for details) but its length is around 12 days. The
infectee displays no symptoms and is not contagious. The incubation period leads into the prodro-
mal period of around 3 days where the patient undergoes high fever (40-41◦C) and suffers from
body aches; however none of these symptoms are unique to smallpox. The patient is immobilized
(due to the fever) and does not shed the virus - hence the stage is non-contagious. The prodromal
period leads to the contagious period.

During the early epoch of the contagious period, the fever abates somewhat and “spots” appear in
the oral cavity. Over approximately 4 days, they evolve into sores and release virons. Coughing
and sneezing during this epoch aerosolizes the virons, causing this to be the most contagious period
of the disease evolution. At the end of this “sore-in-mouth” phase, rashes start appearing over the
body, a process that continues for a further 4 days. The fever returns. At the end of “sore-in-mouth”
and “rash-over-body” phases, the rashes evolve into bumps, pustules and finally scabs. Due to the
overt nature of the rashes (and the recurrence of the fever) the patient has little contact (except with

27



immediate caregivers) and the “rash-over-body” phase is only somewhat contagious (the pustules
contain virons and can release them if they break). The process of development of rashes into
pustules and scabs occurs over a period 4-5 days from the end of the “rash-over-body” and leads
into what we term the scab period. The contagious period lasts (very approximately) 7 days and
the entire “rash and early scab” period lasts 13 days.

The scab period sees the drying and shedding of the scabs. The scabs contain high concentrations
of virons encased in a tough dry covering which prevents them from escaping and thus infecting
others. This scabbing stage is non-contagious and leads either to an abatement of fever and re-
covery (with possible sequelae of blindness, pockmark disfigurations etc) or death. Mortality rates
(Chapter 4 in [13]) show a clear structure, with the very young (< 4 years) and the old (> 40 years)
succumbing to the disease in large percentages (≥ 30%). Vaccination reduces the mortality rate by
a factor of 4. Overall, a mortality rate δ of 30 % was observed amongst the unvaccinated populace.
The entire duration of the disease, from infection to recovery is estimated to be around 36 days.
Recovery engenders long-term immunity.

A.3 Inhalational smallpox

In theory, a single viron “taken” by the host is sufficient to cause smallpox. However, “taking” effi-
ciency is not 100 % and nothing is known regarding the LD50 for smallpox. USAMRIID estimates
that 10-100 inhaled organisms are sufficient for infection (Appendix C in [22]). Experiments with
cynomolgus macaques have shown that extremely high concentrations (108) can cause smallpox
in non-human primates who are otherwise immune to it.

We assume that the human ID50 (infectious dose, 50 % probability) is 5 PFUs (plaque forming
units). We will also assume that 102 ID50 will provide an almost 100 % infection probability.
Assuming a log-normal probability distribution function, the cumulative probability distribution
function (CDF) D(x) (where x is the dose in PFUs) is

D(x) = 0.5
[

1+ er f

(

ln(x/x0)√
2S

)]

(8)

where x0 is 5 PFUs and S = 1.628. The assumption here is that er f (2.0) ≈ 1. Note, that the mean
µ and variance σ2 of a log-normal distribution is given by

µ = x0 e
S2
2

σ2 = x2
0 eS2

(

eS2 −1
)
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A.4 Pathogenesis

The evolution of smallpox shows distinct phases but a great deal of uncertainty exists regarding the
duration of the phases. This uncertainty regarding the duration of the contagious stage is critical to
obtaining credible estimates of casualties. The various stages are:

1. Incubation : This period (the incubation) is asymptomatic and non-contagious with a length
of approximately 12 days.

2. Prodromal : This period is marked by high fever (40-41◦C) and aches. In the absence of any
sneezing and coughing there is no virus shedding, but it seems to have been considered both
contagious [23] and non-contagious [15]. We will assume that this period is non-contagious.
It lasts about 3 days. The characteristics of the fever are not unique to smallpox.

3. Symptomatic, contagious : This follows the prodromal period and shows various symptoms
unique to smallpox. This can be divided into 2 sub-phases.

• “Sore-in-mouth” sub-phase : Following the prodromal period, this lasts 4 days. The
fever drops but coughing and sneezing persist. Small “spots” appear on the tongue and
in the mouth, which over the 4 days, develop into sores. Towards the end of the sub-
phase, the sores burst releasing high quantities of virons into the oropharyngeal cavity,
which are then promptly aerosolized via coughing and sneezing and so shed into the
environment. This is the most contagious period of the disease.

• “Rash-on-body” sub-phase : The 4-day “sore-in-mouth” sub-phase is followed by a 1-
day transition after which rashes start appearing on the body. The fever returns and this
process continues for around 4 days too. Towards the end of the 4-day period, the rashes
start developing into bumps, pustules and finally scabs. While the pustules contain
virons and may release them if ruptured, the high fever and overt symptoms effectively
isolate the patients from everyone except the immediate caregivers. We will consider
the first two days of the “rash-on-body” as being in the contagious symptomatic phase
and the last two days in the noncontagious symptomatic phase, mentioned below.

The contagious phase thus lasts about 7 days.

4. Symptomatic, non-contagious : Once the scabs appear after the “rash-on-body” sub-phase,
they dry and are shed. These scabs contain large amounts of virons encased in a tough shell
which rarely ruptures. Thus this phase is non-contagious. The high fever persists and then
abates as the person recovers or the phase ends in the patient’s death. The cause of death is
usually toxemia; organ failure has not been observed. The duration of this phase is around
14 days - it contains the last 2 days of “rash-on-body”, the 4 days during which the rashes
mature into pustules and scabs and 8 days of shedding of the scabs.

5. Recovery : The duration of the disease (from infection to recovery/death) is around 36 days.
Recovery leads to long-term immunity.
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Ref. [23] [24] [15]
τI 11 13 (7-17) 12 (P5 = 8, P95 = 17)
τP 3 3 (2-4) 3
τI1 12 9 10
τI2 - 11 (4-16) 8

Table A.1. Durations of the Incubation, Prodromal, Symptomatic (contagious) and Symptomatic
(non-contagious) phases from 3 recent studies. [24] listed bounds on the duration of the various
phases. All numbers are in days. [15] provided the 5th and 95th percentiles for the Incubation
period. They also assumed that the disease terminated in 33 days while [24] assumed 36. [23] did
not assume a duration for the disease since it was not required for their modeling study.

We now need to arrive at a “consensus” set of values for the duration of these periods, which
we denote as τI,τP,τI1 and τI2 respectively. We tabulate data from some recent calculations in
Table A.1. Using the data in Table A.1 we arrive at the “consensus” values in Table A.2.

Periods Values

τI µ = 12,σ = 2
τP 3
τI1 µI1 = 7,σI1 = 1
τI2 14

Table A.2. We assume that the incubation and symptomatic (contagious) phases are normally
distributed. The σs here take into account the variation in the data in Table A.1. τI2 is calculated
from the µ of the other periods and a disease lifetime µR = 36 days, σR = 3. All numbers are in
days.

A.5 Transmission

Transmission of the virons occurs via inhalation of aerosols generated either by the patients cough-
ing and sneezing or when handling his bedclothes and personal effects. The latter, called transmis-
sion by fomites, seems to be ineffective [25] and we will concentrate on the first.

Smallpox deactivates quickly in air and so transmission is usually short-range - i.e. by contact.
The classical measure of “contagiousness” is the basic reproductive number R0, the number of
susceptibles a single infected individual infects during the contagious period. Since this is spread
over τI1 , the rate of infection is R0/τI1 . R0 has been estimated for a number of smallpox outbreaks
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[26]. Numbers varied between 3.5 and 6.0. [23], [24] and [15] all assumed 3.0 and we will adopt
this number too.

The actual modeling of transmission via contact in a homogeneous, well-mixed population will be
done via the law of mass action[27]. The probability κ that a susceptible will be infected during a
time period ∆t is

κ = ∆tβI1 = ∆t
R0
τI1

I1
N

where I1 is the number of symptomatic contagious people and N is the total population. Thus β,
the effective infection rate is

β =
R0

τI1N

A.6 Evolution models

Evolution models are of two types - deterministic, which are based on ODEs (ordinary differ-
ential equations) and probabilistic which exploit probability distribution functions (as defined in
Table A.2) to evolve a population of entities. Both models divide the population into 5 compart-
ments

1. Susceptibles (S), the uninfected people who can be infected i.e. people without immunity

2. Latent (L) which includes people in the Incubation and Prodromal stages. τL is characterized
by µL = 15,σL = 2.

3. Contagious (I1), which includes people in the Symptomatic, contagious phase

4. Advanced (I2), which includes people in the Symptomatic, non-contagious phase

5. Removed (R), which includes people who have recovered or died.

Both the models transition people through these compartments, but via different means.

A.7 Deterministic

In the equations below we will assume that vaccinations do not occur as the disease progresses
in the populace. We also assume that people are infected at a constant rate i.e. given a random
infected person, the probability of transitioning to the next compartment is not a function of when
the person was chosen. This does not quite hold true in a bio-terrorist scenario - the index cases
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are infected simultaneously and transition together via the various compartments. Thus the rate of
transition for the entire compartment is a function of time, at least in the initial generations of the
infected entities. The equations are similar to the SIR and SEIR models [27].

Ṡ = −βI1S

L̇ = βI1S− 1
τL

L

İ1 =
1
τL

L− 1
τI1

I1

İ2 =
1

τI1
I1 −

1
τI2

I2

Ṙ =
1

τI2
I2 (9)

The number of dead people is δR. The τ used here are the means listed in Table. A.2.

A.8 Non-deterministic

Non-deterministic simulations evolve a set of entities over a period of time in steps of ∆t. In the
following, we will assume a normal distribution, characterized by a mean µ and standard deviation
σ. Thus the probability of an event happening between t and t +∆t is

1
σ
√

2π

Z t+∆t

t
e−

1
2 ( q−µ

σ )2
dq = Φ(t +∆t;p)−Φ(t;p)

where

Φ(t;p) =
1

σ
√

2π

Z t

−∞
e−

1
2 ( q−µ

σ )2
dq

=
1
2

(

1+ er f

(

t −µ√
2σ

))

where p = {µ,σ}. Thus, the probability Pi→i+1 of a person transitioning from stage i to stage i+1
is related to 1

σ
√

2π

R t+∆t
t e−

1
2 ( q−µ

σ )2
dq by the expression

(1−Φ(t;p))Pi→i+1 =
1

σ
√

2π

Z t+∆t

t
e−

1
2 ( q−µ

σ )2
dq (10)

or

Pi→i+1(t;p) =
Φ(t +∆t;p)−Φ(t;p)

1−Φ(t;p)
(11)
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Thus the transition probabilities are:

1. A susceptible can either stay in compartment S or transition to L, on being infected, in time
∆t with a probability

PS→L = βI1∆t

2. A latent, who has been in the latent state for time t can transition to I1 over a time period ∆t
with a probability PL→I1 given by Eqn. 11 with p = {µL,σL}.

3. A person who has been in compartment I1 for time t will transition over to I2 in time period
∆t with a probability PI1→I2 given by Eqn. 11 with p = {µI1,σI1}.

4. A person in I2 who has been infected for time T will transition over to R in time period ∆t
with a probability PI2→R given by Eqn. 11 with PI2→R with p = {µR,σR}.
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