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Abstract

In this report, we proposed, examined and implemented approaches for performing efficient uncer-
tainty quantification (UQ) in climate land models. Specifically, we applied Bayesian compressive
sensing framework to a polynomial chaos spectral expansions, enhanced it with an iterative algo-
rithm of basis reduction, and investigated the results on test models as well as on the community
land model (CLM). Furthermore, we discussed construction ofefficient quadrature rules for for-
ward propagation of uncertainties from high-dimensional,constrained input space to output quan-
tities of interest. The work lays grounds for efficient forward UQ for high-dimensional, strongly
non-linear and computationally costly climate models. Moreover, to investigate parameter infer-
ence approaches, we have applied two variants of the Markov chain Monte Carlo (MCMC) method
to a soil moisture dynamics submodel of the CLM. The evaluation of these algorithms gave us a
good foundation for further building out the Bayesian calibration framework towards the goal of
robust component-wise calibration.
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Chapter 1

Polynomial Surrogate Construction and
Dimensionality Reduction

We propose and implement a methodology for surrogate model construction that approximates the
input-output relationship in a computationally intensiveforward model. The surrogate model will
provide an inexpensive alternative to the complex model in both forward uncertainty quantification
studies and in inverse problems where many forward model runs are required to infer reliable
estimates of input parameters. The methodology is then illustrated for test problems. It has also
been applied to global sensitivity studies in the Community Land Model (CLM).

1.1 Polynomial Surrogate Construction

The key to performing both forward and inverse UQ on computationally costly models is the
construction of asurrogatemodel that mimicks the input-output relationship. The surrogate can be
evaluated quickly, thus allowing both efficient global sensitivity analysis strategies and parameter
calibration studies without having to run the complex forward model itself impractically many
times.

1.1.1 Polynomial Chaos

Polynomial Chaos (PC) spectral expansions are employed to represent the dependence of a Quan-
tity of Interest (QoI)y on an input parameter vectorλ [7, 26], and to serve as a surrogate to a
computationally intensive forward model. In particular, it allows the input parameters to follow
arbitrary distributions. Indeed, we can view each of the input parameters as random variables,
and consequently, the output QoI is a random variable as well. This output random variable is
expanded in terms of an orthogonal set of polynomials of a standard random variable with respect
to the density of the latter. Here, we employ Legendre-Uniform (LU) PC expansions for simplic-
ity, as well as for an interpretation of the expansion simplyas a response surface or a polynomial
fit. The Legendre polynomial with a multi-indexp = (p1, p2, . . . , pd) is a multivariate polynomial
function ofd variables(η1, η2, . . . , ηd) = η defined by

Ψp(η) = ψp1
(η1)ψp2

(η2) · · ·ψpd
(ηd), (1.1)

13



whereψpi
(η) is the standard one-dimensional Legendre polynomial of degreepi, for i = 1, 2, . . . , d.

The sum of all degreesp1 + p2 + · · · + pd is called the order of the multidimensional Legendre
polynomial (1.1).

Furthermore, the QoIy is represented with a polynomial expansion

y ≈ yc(η) ≡
K∑

k=0

ckΨk(η), (1.2)

where the scalar subscriptk typically corresponds to the graded lexicographic ordering of the
multiindicesp [4]. The expansion (1.2) retains only polynomials of order up to l, i.e. p1 + p2 +
· · · + pd ≤ l, leading to a total ofK + 1 = (d + l)!/(d!l!) number of terms in the truncated
series (1.2). More generally, for a set of multi-indicesS, one can write

y ≈ yc(η) ≡
∑

p∈S

cpΨp(η) =
K∑

k=0

ckΨk(η), (1.3)

where the single indexk corresponds tosomeordering of the multi-indices andK + 1 = |S|.

Typically, the input parameter vectorλ and the random variable vectorη ∼ Uniform[−1, 1] are
related via the cumulative distribution function (CDF)Fλi

(·) of each input parameter, assuming
they are independent,

ηi = 2Fλi
(λi) − 1, for i = 1, 2, . . . , d. (1.4)

For example, whenλi are assumed uniform on their respective intervals[ai, bi], one obtains

ηi =
2

bi − ai

(
λi −

ai + bi
2

)
. (1.5)

Given simple maps (1.4) or (1.5), and without loss of generality, one can identifyλ with η. In the
case of dependent input parameters, or in presence of additional constraints on input parameters,
one can generalize the CDF transformation (1.4) and utilize the Rosenblatt transformation [18] to
obtain a set of independent uniform random variables as an input.

The problem of building the response surface that represents the input-output relationship now
reads as follows: given training model runsD = {(ηi, yi)}

N
i=1, build a polynomial representa-

tion (1.3),i.e. find PC mode vectorc.

1.1.2 Bayesian Compressive Sensing

Bayesian methods are well suited to deal with incomplete, sparse information [20]. Typically, the
outcome of a Bayesian approach consists of a posterior probability distribution, describing our
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knowledge of the quantities under study. Bayes formula in the context of inferring a PC expansion
for the quantities of interest, based on available dataD, can be written as

q(c) ∝ LD(c)p(c) (1.6)

Here the likelihoodLD(c) is a measure of a goodness-of-fit of the polynomial representation to the
data. We will assume a gaussian noise model with standard deviationσ to write

LD(c) = (2πσ2)−N/2 exp

(
−

N∑

i=1

(yi − yc(ηi))
2

2σ2

)
(1.7)

The prior distributionp(c) incorporates any prior information on the object of inference, i.e. the
PC mode vectorc. The posterior distributionq(c) is the main outcome of the inference process,
and it corresponds to the current knowledge about the inferred values ofc giventhe data setD.

While in principle, the Bayesian procedure outlined above could be used to determine the full
vector of coefficientsc of all basis functions, this is in practice not always feasible. If the QoIy
depends on many parameters, then its PC expansion (1.3) willbe very high dimensional, and if the
forward model is computationally expensive to evaluate, then the number of samples required to
determine all terms in this expansion would be prohibitively expensive. Instead, quite often one is
given a fixed number of samples at random locations in the parameter space, and the task becomes
to determine the best possible PC representation given the available data. To this goal, we rely
on Bayesian Compressive Sensing (BCS) to determine a sparse set of basis functions that is best
supported by the data, as outlined below.

The key in inferring a sparse set of PC modes is the usage ofsparsitypriors that “encourage”
the modes to have nearly vanishing values, unless there is strong support in the data for those PC
modes. This leads to a sparse set of basis functions. A commonsparsity prior is the Laplace prior
of a form

p(c) = (λ/2)K+1 exp

(
−λ

K∑

k=0

|ck|

)
. (1.8)

In this case themaximum a posteriori(MAP) estimate of the object of inferencec, i.e. the vector
c that maximizes the posteriorq(c), coincides with the solution of the optimization problem

arg max
c

(logLD(c) − λ||c||1) (1.9)

Clearly, the prior distribution corresponds to thel1 regularization term. The optimization prob-
lem (1.9) corresponds to the classical compressive sensingalgorithm that is extensively used in the
signal processing community [?]. The positive parameterλ controls the relative importance of the
penalty with respect to the goodness-of-fit. It is typicallyfixed at a user-defined value. In a hier-
archical Bayesian setting, however, it can be endowed with aprior distribution and marginalized
over in the posterior distribution.

However, the Laplace prior distribution (1.8) does not allow the computation of the posterior dis-
tribution in a closed form. Instead, following [?], we use a gaussian prior distribution of the form

p(c) ∝
K∏

k=0

exp

(
−
c2k
2s2

k

)
. (1.10)
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Together with the likelihood (1.7), this choice of prior leads to a gaussian posterior distribution
with mean and variance, respectively,

µ = ΣΨT y and Σ = (ΨTΨ + S)−1, (1.11)

whereΨ is aN × (K + 1) matrix with entriesΨik = Ψk(ηi) andS = diag(σ2/s2
0, . . . , σ

2/s2
K).

The likelihood varianceσ2 and the prior variances(s2
0, . . . , s

2
K) together form a vector ofhyperpa-

rameters. Out of convenience, we will use a formal notations2 for the vector of prior variances. In
principle, one can construct a hierarchical Bayesian formulation with appropriate conjugate priors
for σ2 ands2 to obtain a closed form for the posterior distribution ofc. Here, however, a less
complicated approach will be taken. Namely, the hyperparameters will be fixed at the values that
maximize theevidenceor the integrated likelihood

E(σ2, s2) =

∫

RK+1

LD(c;σ2)p(c; s2)dc ∝ σ−1|C|−
1

2 exp

(
−

1

2σ2
yT C−1y

)
, (1.12)

whereC = I + ΨS−1ΨT .

The maximization procedure forE(σ2, s2) essentially links Bayesian regression with the Rele-
vance Vector Machine (RVM) technique. An iterative procedure for maximizingE(σ2, s2) [?]
leads to very small values fors2

k for somek’s, indicating that the evidence is maximized when the
prior for the corresponding coefficients becomes a delta function around 0, i.e. the corresponding
coefficients should be set to 0. The corresponding basis polynomialsΨk(·) are then dropped from
the basis set. Therefore, the procedure automatically detects and retains the most important or rele-
vant basis terms. While the BCS tolerance parameter allows detecting smalls2

k values, in practice,
an additional down-selection is needed by retaining the first Kb terms from the list of basis terms
selected by BCS. This allows direct control on the number of basis terms retained, in case one
needs to avoid overfitting or needs to have a bound on the basisset to meet computational budget
constraints.

1.1.3 Iterative procedure with BCS

With a total order truncation and in the presence of a large number of dimensions, one can not
afford to build an initial PC basis of order greater than two.Here we propose an iterative procedure
that allows increasing the order for the relevant basis terms while maintaining the dimensionality
reduction. Namely, given a multi-index setS corresponding to the current basis, we add a basis
term only if it isadmissible, i.e. if by subtracting an order from each non-zero dimension one never
obtains a multi-index outside the setS. In other words,

p = (p1, . . . , pd) is added toS, if p − ei ∈ S, for all i = 1, . . . , d, (1.13)

whereei = (0, . . . , 1, . . . , 0) with 1 in thei-th position. The full algorithm then reads as follows:

• Step 0. LetS̃ be a set of multi-indices with a total order≤ l0, wherel0 is the initial PC order,
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• Step 1. Run the BCS algorithm to reduce the current basis setS̃ → S. If needed, retain only
firstKb terms,

• Step 2. Enrich the current basis by all admissible basis terms and call the new basis multi-
index setS̃. Repeat from Step 1 until the maximal orderl is reached.

The resulting representation reads as follows:

ŷ(η) =
∑

p∈S

cpΨp(η), (1.14)

where the PC modescp are described by a multivariate gaussian posterior of a dimensionality that
is equal to the cardinality ofS.

1.1.4 Error measure

We will consider two error measures, the goodness-of-fit of the resulting representation at the
N = Nt training points or at randomly chosen,Nv validationpoints. In particular, we will rely on
a relativeL2 error. More precisely, the validation error will be

Ev(c) =

√∑Nv

i=1 (y(ηi) − yc(ηi))
2

∑Nv

i=1 y(ηi)
2

, (1.15)

where the posterior mean PC mode vector is takenc = {cp∈S} with some ordering of the multi-
indicesp ∈ S. The error at the training pointsEt(c) is defined similarly. Note that our construction
leads to anuncertainresponse surface, since the polynomial representation coefficientsc are asso-
ciated with a posterior probability distribution.

1.2 Test Results

1.2.1 Test 1: Analytically tractable case

Below we describe a very simple test case, where the reduced basis can be seen a priori based on
the forward function. Namely, consider a3-dimensional function

f(x, y, z) = x2 + xy2 + z3 (1.16)

where the input vector is denoted byη = (x, y, z) for clarity of presentation. The function (1.16)
can be representedexactlyin Legendre polynomial basis with6 terms only. Namely,

f(x, y, z) =
1

3
ψ0 +

1

3
ψ1(x) +

2

3
ψ2(x) +

3

5
ψ1(z) +

2

5
ψ3(z) +

2

3
ψ1(x)ψ2(y), (1.17)
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whereψi(·) is the univariate Legendre polynomial of orderi, or, in terms of a ‘dummy’ variablet,

ψ0 = 1, ψ1(t) = t, ψ2(t) =
1

2
(3t2 − 1), ψ3(t) =

1

2
(5t3 − 3t). (1.18)

We run the BCS algorithm with an initial orderl0 = 3 and without any additional iterations. The
3-rd order,3-dimensional polynomial basis corresponds to20 basis terms. The algorithm correctly
detects the only relevant terms. Namely, it detects and retains the same6 basis terms that appear
in the exact expansion (1.17).

1.2.2 Test 2: Number of training runs necessary for reliable results

Consider a test function

y = exp

(
d∑

i=1

aiηi

)
, (1.19)

where positive constantsai are picked to correspond to the ‘importance’ of thei-th dimension. In
other words, it is expected that the larger the value ofai the more relevant basis terms along the
i-th dimension are.

Thesparsenessof available data is an essential issue and in principle challenges the BCS proce-
dure. The following experiment will help determine how manysamples are required to reliably
detect a lower dimensional structure in a high-dimensionaldata set. Let us take firstdimp dimen-
sions to be more important by an order of magnitude than the remainingd − dimp dimensions.
Namely, we take

ai =

{
1 if 1 ≤ i ≤ dimp,

0.1 if dimp < i ≤ d,
(1.20)

and run the BCS procedure withl0 = 1, i.e. first order polynomial basis and a very generous
tolerance. The goal of this simple test is to check whether the BCS algorithm picks the already-
known important dimensions before the rest of the dimensions. For additional robustness, we
generate10 different sample sets each withNt points, and declare success only if all10 replica
tests have detected the firstdimp important dimensions correctly.

Table 1.1. Number of training runs needed to reliably detect a
lower-dimensional structure.

dimp d Nt

1 any 20
2 any 50
5 any 130
10 any 980

18



In Table 1.1, we report the estimated number of training samples that are necessary for a reliable
detection (i.e. no failures in10 replica runs) of the important dimensions for different values of
the number of important dimensionsdimp. The total number of dimensionsd, as it turns out, is not
important. Clearly, the number of training runs necessary todetect low-dimensional structures in
the forward model depends on the dimensionality of these low-dimensional structures only, and is
independent of the total number of dimensions.

1.2.3 Test 3: Convergence for various model sparsities

Consider now a somewhat more realistic example, where the dimensional importancesai in (1.19)
change in a more gradual manner. Let us take

ai =

(
i

d

)M

. (1.21)
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Figure 1.1. (a) Dimensional importances chosen for three test
problems with varying degree of model sparsity. (b) The relative
L2 errors as functions of the basis cardinality for all three test prob-
lems computed at the training points and at the validation points.
At every iteration, the basis is enriched by adding all the admissi-
ble basis terms of one order higher, up to fourth order. Note the
logarithmic scale on both axes.

We fix the total dimensionality for this experiment atd = 50 and varyM . In particular, we picked
three different values forM = 5, 15, 35, as illustrated in Figure 1.1(a). Clearly, for largerM , more
relative importance is given to a fewer number of dimensions, i.e. the effective lower-dimensional
space is smaller. Let us introduce a modelsparsitymeasure as the number of dimensions that
contribute to∼ 90% of the total sum ofai’s. It can be checked that theM = 5, 15, 35 cases
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correspond to sparsities of16, 8 and4, respectively. For example, forM = 35,
∑

i>d−4(i/d)
M

∑d
i=1(i/d)

M
≈ 0.9. (1.22)

As Figure 1.1(b) illustrates, a model with better sparsity (i.e., with a smaller number of important
dimensions) is represented better with the same number of training runs. The relativeL2 error on a
validation set is a stricter test for the PC representation and it often indicates overfitting. That is, the
relative error on the training points tends to decrease whenmore basis terms (degrees of freedom)
are included, while the validation errorEv(c) could be increasing when more than necessary terms
are used to represent the current set of data.

1.2.4 Test 4: Dimensionality sorting study

Let us focus on theM = 15 case and illustrate further how the BCS algorithm detects theim-
portant dimensions. The dialed-in dimensional importances 1.21 are randomly shuffled for the
purpose of illustration. The BCS algorithm is run only up to first order, with a very generous
tolerance. Therefore, eventually, all the dimensions are picked as relevant. However, the RVM
optimization procedure clearly shows the order of importance of the dimensions: the faster the
iterative procedure fors2

k converges, the more important thek-th basis term is. Figure 1.2 shows
the values of dimensional importances, as well as the order by which the algorithm picks them.
With a stricter threshold, the BCS algorithm would stop earlier according to the red line shown
in the figure. This proof-of-concept demonstrates that the BCS algorithm detects the dimensional
importances in the expected sequence.

1.2.5 Test 5: Study of the dependence on the total dimensionality

The following test case is meant to study the dependence of the accuracy of the final representation
on the dimensionalityd of the input space. In particular, we used the test function (1.19) with
dimensional importances dialed-in according to 1.21 withM = 10 and varyingd. Once again this
demonstrates that while1000 training points is sufficient to represent a10-dimensional problem
with a reasonable low-dimensional structure well, it is somewhat satisfactory for a30-dimensional
problem, and fails to a certain degree, i.e. overfits, when trying to build a representation for a
50-dimensional problem.
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Figure 1.2. Results of a first order BCS procedure with a50-
dimensional test function andNt = 1000 training samples. The
dimensional importances are shown with blue dots, while the se-
quence in which the procedure picks the important dimensions is
highlighted by the red lines joining the dots, starting from the top.
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adding all the admissible basis terms of one order higher, up to
fifth order.
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Chapter 2

Efficient Sampling in Irregular Domains

2.1 Grids in Regular Domains

Building a PC surrogate for the CLM model requires numerical approximation of numerous pro-
jection integrals, and utilizes multidimensional quadrature rules. Such multidimensional numerical
quadrature is often built up from one-dimensional quadrature rules. A direct application of iter-
ated integration leads to a multidimensional tensor-product grid. More sophisticated combinations
of the univariate grids can lead to sparse grids which improve the efficiency of the multivariate
quadrature for a given accuracy. This section will begin with a discussion of one-dimensional
grids and conclude with a discussion on the Smolyak construction of grids tailored for projecting
onto a prescribed basis.

2.1.1 One-dimensional Gauss-Patterson grids

The multidimensional rectangular grid sparse quadrature is based on a series of one-dimensional
Gauss-Patterson [15] quadrature rules. These formulae arenested, and it was shown that addi-
tion of n + 1 points to ann-point formulae yeilds an accuracy of degree approximately3n. The
methodology for computing the recursively nested Gauss formulae is described below.

Let ann-point quadrature formula be augmented withp additional points, and letGn+p by the
polynomial whose roots are then+ p abscissae of the new quadrature rule. A general polynomial
of degreen+ 2p− 1 can be expressed as

Fn+2p−1(x) = Qn+p−1(x) +Gn+p(x)

p−1∑

k=0

ckPk(x) (2.1)

whereQn+p−1 is a general polynomial of degreen + p− 1 andPk is the Legendre polynomial of
orderk. SinceQn+p−1 can always be integrated exactly by an+ p-point quadrature, if

∫
Gn+p(x)Pk(x)dx = 0, k = 0, 1, . . . , p− 1 (2.2)

then all polynomial of degreesn+ 2p− 1 can be integrated exactly by then+ p-point quadrature.
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We start deriving then+ p formulae by first expandingGn+p as

Gn+p(x) =

n+p∑

k=0

ckPk(x) (2.3)

This expression is subsituted into eq. 2.2 leading to

n+p∑

i=0

ci

∫
Pi(x)Pk(x)dx, k = 0, 1, . . . , p− 1 (2.4)

This implies, due to orthogonality of Legendre polynomialsthat ck = 0 for k = 0, 1, . . . , p − 1.
ThusGn+p can be rewritten as

Gn+p(x) =

[n/2]+1∑

k=1

ckP2k−2+p+q(x) (2.5)

whereq = n− 2[n/2]. Since the original abscissae of then-point formula,xj, j = 1, 2, . . . , n are
also the roots ofGn+p, a linear system can be assembled to compute the first[n/2] ck coefficients
while the last coefficientc[n/2]+1 can be arbitrarily set to1.

[n/2]∑

k=1

ckP2k−2+p+q(xj) = −Pn+p(xj), j = 1, 2, . . . , [n/2] (2.6)

Once the coefficientsck are computed, the quadrature points are the roots ofGn+p given by ex-
pression (2.5).

The weights of the associated with the newn+ p-point rule can be computed as [?]

wj ∝

∫
Lj(x)dx, j = 0, 1, . . . , n+ p (2.7)

whereLj is Lagrange interpolating polynomial of ordern+ p− 1, Lj(x) =
n+p∏
i=1
i6=j

x−xi

xj−xi
.

The procedure above can be applied recursivelly, starting,for example, with ann-point Gauss-
Legendre rule and addingp = n+ 1 abscissae at every iteration. Ifn→ 2n+ 1, then the resulting
quadrature rule is of approximately3n/2 degree. The table below shows the abscissa and weights
for Gauss-Patterson rules obtained starting from a 3-pointGauss-Legendre rule. Since the points
are symmetric with respect to0, only the positive abscissae and weights are shown. Please note
that, for each recursion, the quadrature weights are computed for all abscissae.
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Gauss-Legendre3-point rule
x : 0 0.77460
w : 0.88889 0.55556

+4 points⇒ Gauss-Patterson7-point rule
x : 0 0.43424 0.77460 0.96049
w : 0.45092 0.40140 0.26849 0.10466

+8 points⇒ Gauss-Patterson15-point rule
x : 0 0.22339 0.43424 0.62110 0.77460 0.88846 0.96049 0.99383
w : 0.22551 0.21916 0.20063 0.17151 0.13442 0.092927 0.0516030.017002

2.1.2 Multivariate Quadrature and the Smolyak Construction

One approach to multivariate quadrature is to use one-dimensional rules iteratively over the dimen-
sions of the domain. This is equivalent to selecting a multivariate grid which is a tensor product
of one-dimensional rules. Ifn points are used in each ofd dimensions, then the integrand needs
to be evaluated atnd points. This is often many more than is needed for a given accuracy when
the dimensionalityd is high. Indeed, Smolyak introduced sparse grids which are based on a sparse
tensor-product construction.

Sparse Grids

Let {(Gn,Wn)}n∈I be a sequence of one-dimensional grids (indexed byI) where gridGk contains
k points, with quadrature weightsWk = (w1

k, w
2
k, . . . , w

k
k). Let αk be the accuracy of(Gk,Wk),

that is, quadrature on(Gk,Wk) has no error for polynomials of orderαk (or less).

A full-tensor product gridT =
⊗d

i=1(Gki
,Wki

) =
(
GT ,W T

)
has precisionα = (αk1

, . . . , αkd
),

meaning that quadrature onT for each[xa1

1 x
a2

2 · · ·xad

d ] with all αki
≤ ai has no error. In order forT

to have accuracyαn, then eachki must be at leastn. In particular, a full-tensor grid with accuracy
αn will have at leastnd points. For example, a full-tensor grid in 10 dimensions with accuracy 5
will require at least310 = 59, 049 points!

Smolyak demonstrated the construction of quadrature gridswith much fewer points than full-
tensor grids, each with the same accuracy. Consider two full-tensor gridsA =

(
GA,WA

)
and

B =
(
GB,WB

)
, with precisionα andβ respectively. Letγ = min(α, β) (the component-wise

minimum), and letC = (GC ,WC) =
⊗d

i=1(Gci
,Wci

) be the full-tensor grid with precisionγ.
ThenA,B,C can be combined into a quadrature ruleS =

(
GS,W S

)
with

GS = GA ∪GB ∪GC , (2.8)

and the weightsW S on these points such that

QS = QA +QB −QC (2.9)
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and precision set

σ = α ∪ β = {(p1, . . . , pd) : eachpi ≤ αi or eachpi ≤ βi}. (2.10)

If theGn are nested (e.g. Gauss-Patterson or Clenshaw-Curtis) thenGS will have fewer points than
the full-tensor product of precisionmax(α, β).

This construction can be generalized to a sequence of full-tensor grids{Aj}. In particular, a sparse
grid of accuracyα is the minimal union of tensor grids of accuracy at leastα.

Polynomial Projection

A sparse tensor-product construction for nonintrusive spectral projection follows similarly. Each
integral in the spectral projection

f =
∑

α

fα ϕα fα = 〈f ϕα〉 (2.11)

may utilize a distinct quadrature rule. In order for the projection to be exact whenf is a polynomial
of (multi-index) orderα, the quadrature must be exact on all polynomials of order up to 2α. In
particular, if it is knowna priori thatf can be represented on a prescribed basis in multi-indices
{αi : i = 1 . . . N} then the projection can be computed efficiently on a (sparse)grid which is exact
on indices

σ =
⋃

i

αi (2.12)

using the notation in (2.10). This approach provides a grid for projection with many fewer points
(in general) than using a single grid suitable for all projections simultaneously.

2.2 Grids in Irregular Domains

One of the primary assumptions in the above constructions ofmultivariate quadrature grids is
that the domain of the integrand is regular, that is, it can bewritten as a tensor product of (one-
dimensional) intervals. In some models, such as CLM, the domain is known to be irregular. One
approach we have investigated is mapping the irregular domain to a regular domain via a Rosenblatt
transformation. Another approach is to employ efficient quadrature in the irregular domain directly.

The idea is to find a quadrature rule(G,W ) with grid G = (x1, . . . , xN} (eachxi ∈ R
d) and

weightsW = (w1, . . . , wN) which is exact on the span of some basis{ϕj : j = 1, . . . , P} on the
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domainΩ,

N∑

i=1

ϕ1(xi)wi = 〈ϕ1〉

N∑

i=1

ϕ2(xi)wi = 〈ϕ2〉

... (2.13)
N∑

i=1

ϕP (xi)wi = 〈ϕP 〉

such thatxi ∈ Ω.

The exactness constraint provides a system ofP equations andN(d + 1) unknowns. Informally,
the quadrature(G,W ) is said to beefficientif P ≈ N(d + 1). Any additional constraints, such
as requiring the weightswi be positive, may lead to gridsG which are less efficient (contain more
points). While sparse grids are easy to construct, they are generally contain more grid points than
efficient quadratures. For instance, the popular Clenshaw-Curtis sparse quadrature hasP = N for
everyd.

The general conditions under which an efficient quadrature exists is not known. Furthermore,
when the dimensionalityd is large, the nonlinear system (2.13) is difficult to solve, even for a
regular domain. Finding efficient quadrature rules for highdimensional domains (both regular and
irregular) is the subject of future work.

2.2.1 Efficient Quadratures in Smolyak Construction

The domain of CLM is irregular, but can be written as the tensor-product of a regular slice and a
sequence of irregular slices

Ω = ΩR ⊗ ΩI1 ⊗ · · · ⊗ ΩIK
. (2.14)

This is due to constraints on some parameters. In particular, there are some triplets of parameters
which are required to be positive and sum to one, which requires that triplet to be bounded by a
triangular region in parameter space. In this case a quadrature grid can be constructed for the full
domainΩ via a sparse tensor-product of efficient grids on each slice.

This approach may benefit from utilizing nested sequences ofquadratures in the irregular domain
slices. We would expect, however, that a nestedness constraint will come at the cost of efficiency
(e.g. Gaussian quadrature grids are efficient in an interval, but the nested Gauss-Patterson grids
need roughly twice as many points for the same order of accuracy). Investigation of the relative
benefit of using nested quadratures is the subject of future work.
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Figure 2.1. Sparse quadrature of total order five on a triangular
prismT ⊗ I using efficient quadratures in the triangle sliceT and
Gauss-Patterson quadrature in the intervalI. Each green point is a
first-order triangle quadrature. Each set of three blue dots, together
with the central green point, are third order grids. The six red
points, together with the central green point, constitute a fifth-order
grid in the triangle.
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Chapter 3

Models Calibration Using Multichain
Differential Evolution Monte Carlo
Methods

3.1 Introduction

The aim of this chapter is to investigate multichain sampling methods as a means of fitting models
to data, to estimate the models’ parameters. Multichain methods for inverse problems, of which
parameter estimation is a classical example, are a relatively new development. These methods
allow the estimation of model parameters as distributions,which, in turn, allows the calculation
of the parameters’ uncertainties e.g., in the form of a mean value and a standard deviation. The
multichain nature of the technique allows a conceptually simple path to parallelization, allowing
their use with computationally expensive models (in relation to single-chain methods) e.g., coupled
sets of submodels currently implemented in the Community Land Model version 4 (CLM4) [5].
However, multichain methods have not been tested with the kind of nonlinear models that are
usually incorporated into Earth System Models, nor have their performance been compared with
more established methods. Doing so forms the main thrust of this chapter. A secondary objective
is to develop methods for model selection, e.g., given two competing models which are fit to the
same data, which should one choose for further use (i.e., which one fits the data best)?

Calibration, or the fitting of models to data / observations / measurements to estimate model pa-
rameters, is part of any scientific activity. Typically, oneestimates a single numerical value (also
known as a point estimate) for the model parameters, usuallyby minimizing anL2 norm of the
discrepancy between model predictions (for a proposed set of model parameter values) and ob-
servations. However, within the context of uncertainty quantification, point estimates are rather
irrelevant – the estimates usually do not provide any quantification of the uncertainty (e.g., in the
form of “error bars”) directly and consequently, are useless in a study of the parametric uncer-
tainty of the model. Simply putting bounds on the variation of a model’s parameters does not help;
the independent treatment of parametric uncertainties lead to parameter combinations which are
aphysical and for which the model may not be defined. Thus a probabilistic treatment of the model
parameters, where parameters estimates are defined as probability density distributions (rather than
point values) is desired. A distribution also allows “errorbars” to be calculated easily; further, a
joint distribution of parameters specifies the combinations of parameter values which are physi-
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cally meaningful.

A Bayesian formulation of an inverse problem [13] is a commonapproach when model parameters
are desired as distributions. A Bayesian inverse formulation combines a likelihood function (the
probabilityL(yobs|Θ) of observing the datayobs, given a certain value of model parameters,Θ)
with prior beliefs regarding the value of the parameters,π(Θ), to obtain a posterior distribution of
the model parameters, conditioned on the data

P (Θ|yobs) ∝ L(yobs|Θ)π(Θ) (3.1)

The posterior distributionP (Θ|yobs) is constructed by drawing samples from it. SinceP (Θ|yobs)
is usually an arbitrary distribution (as opposed to a well-known one like a Gaussian), specialized
samplers are required. Markov chain Monte Carlo (MCMC) methods[8] are typically used for
this purpose. Since each sample requires a model evaluation(which can be rather expensive in
case of physics models), efficiency of sampling becomes a foremost concern. Adaptive MCMC
methods, e.g., the Delayed Rejection Adaptive Metropolis (DRAM, [11]), are being increasingly
used in parameter estimation, especially when the model is moderately intensive computationally
(e.g., 1D and small 2D partial differential equations (PDEs) [14, 16]). However, DRAM draws
its samples sequentially i.e., it is asingle-chainalgorithm, and the question arises whether the
computational expense can be divided among multiple chains, which can subsequently be put
on separate processors. Note that there is no restriction onthe use of aparallelized modelwith
DRAM; our focus, instead, is on partitioning the samples among processors.

Multichain methods: Multichain methods for solving Bayesian inverse problems are a class of
global, stochastic optimization methods. In this study, wewill restrict ourselves to the DrEAM
algorithm (“Differential Evolution Adaptive Metropolis”, [25]), which is a generalization of DE-
MC (“Differential Evolution Markov Chain”, [21]). Both DE-MC and DrEAM are related to a
class of Population Monte Carlo methods (see the literature review in [21]), which have been
successfully used in hydrology research [22–24]. In DrEAM,one simultaneously releases Markov
chains from an over-dispersed set of points in the parameterspace. These chains march in a manner
similar to traditional MCMC methods; the difference lies in the manner in which the proposals are
created. In order to construct a proposal for a chain, the remaining chains (or a subset thereof) are
gathered into pairs (without replacement) and the difference vector between the states in each chain
pair calculated. These difference vectors are combined (indifferent manners, giving rise to variants
of the DE-MC and DrEAM algorithms) and scaled to calculate a proposal. The combination of
states from various chains provides the correct orientation of the proposal distribution; the DrEAM
algorithm determines the correct scaling. The proposal is accepted/rejected using an acceptance
probability, derived in much the same manner as conventional MCMC methods.

The generation of proposals by combining the current statesof multiple, concurrent chains is quite
different from DRAM, which generates them from a multivariate Gaussian distribution. DRAM
keeps a running history of the sample chain, and the proposaldistribution’s covariance matrix is
periodically updated using it. Thus the history of the chainis used to orient the proposal distri-
bution; its scaling follows arguments which are very similar to DrEAM. The use of a multivariate
Gaussian proposal makes DRAM very efficient when constructing posteriors which are similar
to Gaussians; however, in case of fat-tailed or multimodal distributions, mixing can be a prob-
lem. In principle, this shortcoming coming can be addressedby DrEAM, but this pre-supposes
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an adequacy of concurrent chains from which an efficient posterior can be fashioned. Generally,
in DrEAM [25], the practice has been to have as many chains as the number of parameters being
estimated.

This brief discussion of DrEAM and DRAM lead to two hypotheses

1. For inverse problems where few (e.g., less than five) parameters are to be estimated i.e., low-
dimensional inverse problems, DRAM may be more efficient than DrEAM. This is because
it is unlikely that an efficient proposal distribution can befashioned from a combination of 2
or 3 pairs of concurrent chains. This problem can be ameliorated by having many DrEAM
chains, even for low-dimensional problems, but this comes at the cost of computational
efficiency vis-̀a-vis a single-chained DRAM approach.

2. As the dimensionality of the inverse problem increases, DrEAM may become more compet-
itive, especially for fat-tailed posterior distributions.

Verifying these hypotheses forms the bulk of the study.

Model selection:Selecting between competing models fitted to the same data isa straightforward
task when parameters are estimated as point values; theL2 norm of the discrepancy between data
and model prediction forms a convenient metric. The problemis more involved when parameters
are evaluated as distributions. In [9, 10], Gneitinget al. derive metrics, predicated on posterior
predictive tests, that can be used to rank fitted models conditioned on their ability to reproduce
observations. Basically, the model is evaluated using parameter samples from the posterior dis-
tributions to create an ensemble of model predictions corresponding to measurements (i.e., we
conduct a posterior predictive test). One of the metrics that can be simply calculated is the mean
absolute error (MAE) between the predictions and the data. For the cumulative rank probability
score (CRPS), one calculates the difference between the CDFs (cumulative distribution function)
of the model predictions and the measurement (denoted as a step function). The interval score (IS),
obtained using the interquartile range (IQR), forms yet another metric to gauge the (predictive) skill
of the posterior predictive test.

Note that all three metrics select between models based on the predictive skill of the fitted mod-
els. They do not distinguish between the complexity of the model and cannot detect over-fitting.
The conventional statistical tactic of proposing nested models of increasing complexity and using
information theoretic criteria e.g., Akaike Information Criterion is rarely of much use in scientific
settings since few physically-based models are nested; rather, competing models reflect hypothe-
ses regarding the underlying physical processes governingthe observations. In such a setting,
predictive ability is often a sound basis for model selection.

We structure the study as follows. We will investigate DrEAMand DRAM first within the context
of a linear problem which has an analytical solution. This will allow us to gauge the difference
between the two “numerical’ solutions of the inverse problems (as obtained from DRAM and
DrEAM) as well as their difference from the true solution. Wewill then proceed to a test with
a nonlinear model of soil hydrology, to estimate the distribution of clay, as a function of depth,
using simple (2 or 3-parameter) models of the clay profile. This will be followed by a test where a
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higher-dimensional model (a 10-parameter Markov random field) is used for the clay profile. We
expect that DRAM will outperform DrEAM in the low-dimensional problem, but a 10D problem
may be large enough for DRAM and DrEAM to be comparable.

The chapter is structured as follows. In Sec. 3.2 we derive the Bayesian inverse problem and
specify the error models. In Sec. 3.3 we describe the forwardproblems. In Sec. 3.4, and its
subsections, we describe the modeling required to reduce the dimensionality of the inverse problem
and the method used to generate the synthetic data on which the two methods were tested. We also
demonstrate the use of MAE, CRPS and IS to select between models. In Sec. 3.5, we draw our
conclusions.

3.2 Formulating the inverse problem

LetM(Θ) be a model, with the parametersΘ which have to be estimated from a set of datayobs.
Both yobs andΘ are vectors, andyobs can be time-dependent. The model may not reproduce the
data exactly (there are errors arising from measurements and the model’s shortcomings) and we
model the errors as i.i.d. Gaussians.

yobs = M(Θ) + ǫ, ǫ ∼ N (0, σ) (3.2)

Under these conditions, the probabilityL(yobs|Θ) of observing the datayobs, given a given value
of model parameters,Θ) is given by

L(yobs|Θ) ∝
N∏

i=1

exp

(
−

(yi −M(Θ))2

σ2

)
, (3.3)

where{yi} = yobs are the elements in the data vector, which is of sizeN . σ is assumed known.

The prior beliefs regardingΘ are modeled simply. We assume that the values of each component
of Θ are independent and are modeled as Gaussians with large standard deviations i.e., these are
vague priors, which allow the data to determine the parameter values. Thus

π(Θ) =
m∏

j=1

πj(θj), (3.4)

wherem is the size of theΘ = {θj} vector (i.e., the number of parameters to be estimated), and
πj are Gaussians. The exact specification of the priorsπj andσ are problem dependent and will be
mention for each of the tests in Sec. 3.4. Substituting Eq. 3.3 and Eq. 3.4 into Eq. 3.1 completes
the inverse problem formulation.

3.3 Description of the forward problems

We consider two forward problems, a linear one to check the accuracy of DRAM versus DrEAM
and a nonlinear one to compare their efficiency. These are described below.
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3.3.1 Linear forward problem

We consider a unit domain[0, 1] discretized with a uniform grid with 10 grid cells. A fieldx is
described at the cell-centers.x varies smoothly in space and is a sample drawn from a multivariate
(10-dimensional) GaussianN (0,Γ), with a stationary covariance matrixΓ, given by the correla-
tion functionC(∆ij) = exp(−∆2

ij/λ
2). The correlation lengthλ = 0.3 and∆ij is the distance

between grid cellsi andj. The model predictionsy are given byy = Ktx, whereKt is a matrix.
The elements ofKt were chosen randomly.

3.3.2 Soil moisture dynamics

The soil moisture dynamics model, also referred to as the Zeng & Decker (ZD) model, is described
in [27]. Its incorporation into the CLM4 is described in Chapter 7, Section 4 of [5]. CLM4
uses a highly stretched, 10-block grid to model subsurface hydrological dynamics. This (almost
exponentially) stretched grid, which reaches 3.44 m below the land surface, and the position of a
saturated zone (in case of a shallow water table) leads to numerical instabilities when Richard’s
equation is solved using conventional PDE discretization and time-integration techniques; the ZD
model is a reformulation, with a particular time-implicit formulation that preserves stability. The
equation is written as

∂φ

∂t
=

∂

∂z

[
k
∂(ψ − ψE)

∂z

]
−Q, (3.5)

whereφ (mm3 of water permm3 of soil) is the soil moisture fraction,ψ is the soil matric potential
[mm] andψE is the equilibrium soil matric potential. Bothψ andψE are complicated algebraic
functions ofφ. The hydraulic conductivityk is dependent on (via nonlinear algebraic relationships)
on the soil moisture fraction, and the volumetric content (volume fractions) of clay, sand and
organic matter in the soil. The relationships are documented in [5]. Q captures the external flux of
moisture into the soil. This consists of precipitation, seepage of surface water and loss of moisture
from the subsurface via evapotranspiration. In our problem, we will ignore the seepage of surface
water. Precipitation will follow observed data. Loss of soil moisture via evapotranspiration is
modeled according to the models in Chapter 8, Section 1 (stomatal resistance) in [5].

The model was specialized to our site (Diablo plateau, east of El Paso, Texas). The only vegetation
considered in evapotranspiration was C4 grass (typical for Diablo plateau). The water table was
assumed to be deeper than 3.44 meter (i.e., the soil was assumed to be partially saturated). The grid
spacing, the true sand and clay profiles and precipitation (gathered weekly, over a 20 week period)
were taken from [28] for the “dry-location” test case. The evapotranspiration profile (variation
with depth) is taken from [6].
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3.4 Tests

In this section, we first test the accuracy of the DrEAM and DRAM solution in a problem with an
analytical solution (Sec. 3.4.1). We follow this up with a test using the nonlinear ZD model using
two simple clay profile models in Sec. 3.4.2. In the same section, we demonstrate the use model
selection scores (CRPS, MAE and IS) to select between the two clay profile models. We finally
compare DrEAM versus DRAM with a 10-dimensional inverse problem in Sec. 3.4.3. The Mat-
lab code for DRAM was obtained from http://www.helsinki.fi/∼mjlaine/mcmc/. The Matlab code
for DrEAM was obtained from http://jasper.eng.uci.edu/software.html. The samples were checked
for convergence (independence of the Markov chain) via themcgibbsit package (http://cran.r-
project.org/web/packages/mcgibbsit/) which is based on the theory in Chapter 7 of [8]. For multi-
chain DrEAM, the Gelman-Rubin statistic (Chapter 8 in [8]) was also used to monitor convergence.

3.4.1 A linear inverse problem

We consider the 10-dimension linear problemy = Ktx described in Sec. 3.3.1. We create a
synthetic data vectoryobs, yobs

j = yj + ej, ej ∼ N (0, ǫ2), j = 3, 5, . . . 9, whereǫ = 0.001 so
that

yobs = Kx + e, (3.6)

where the sensitivity matrixK contains rows3, 5, . . . 9 of the matrixK. We model the inferred
solutionx

′

as a multivariate Gaussian drawn from a Gaussian posterior distribution i.e. x
′

∼
N (x̂, Γ̂). We assume a priorπ(x) ≡ N (xa,Γ). The analytical expressions [17] for{x̂, Γ̂} are

x̂ = xa + ΓKT
(
KΓKT + Sǫ

)−1
(yobs − Kxa)

Γ̂ = Γ − ΓKT (KΓKT + Sǫ)
−1KΓ. (3.7)

We setxa = 0 andSǫ = ǫ2I and calculate the particulars of the posterior distribution N (x̂, Γ̂)
exactly.

The same problem is solved using DRAM and DrEAM. In both cases, 5,000,000 samples were
drawn by the two methods. DrEAM was run with 20 chains. We model x

′

= Lz, whereL is the
Cholesky decomposition ofΓ andz is a 10-dimension vector whose elements are i.i.d standard
normals. Samples (ofz) from the posterior distribution are converted into samples of x

′

. In
Fig. 3.1 we plot the truex, the analytical solution̂x and the median, 25th and 75th percentiles of
the estimate of̂x calculated using DRAM and DrEAM. We see that the numerical results agree
very closely with each other, as well as with the analytical results. TheL2 norm of the difference
between the numerical̂x and the analytical one are 0.275 (DRAM) and 0.2588 (DrEAM). This
conveys the impression that distributions e.g., the covariance matrices may also agree with the
analytical result. In Fig. 3.2 (top row), we plot the DRAM andDrEAM covariance matrices.
We see that they are symmetric but do not agree with each other- the Frobenius norm of the
difference between the DrEAM and DRAM covariance matrices is 0.195. In the bottom row, left,
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Figure 3.1. Comparison of the truex (thick line), x̂ (crosses)
and the inferences calculated using DRAM (in blue) and DrEAM
(in red). We see that the median of thex

′

samples are very close
to the analytical result, regardless of whether DRAM or DrEAM
was used. The 25th and 75th percentiles also show very little dif-
ferences. TheL2 norm of the difference between the numericalx̂

and the analytical one are 0.275 (DRAM) and 0.2588 (DrEAM).

we plot the analytical results. Comparing with the top row, wesee that neither the DRAM nor the
DrEAM solutions are close to the analytical result. The Frobenius norm of the difference between
the empirical covariance matrices and the analytical one are 0.68 (DRAM) and 0.705 (DrEAM).
Thus the two empirical covariance matrices are closer to each other than they are to the analytical
solution. In the bottom right subfigure, we plot the diagonalelements of the analytical, DRAM and
DrEAM covariance matrices. While the DrEAM and DRAM solutions agree (to a degree), they
are quite different from the analytical solution, reinforcing the conclusions obtained by comparing
the covariance matrices.

In Figs. 3.3 and 3.4, we plot the marginals forx3, x5, x7, x9 as obtained from DrEAM and DRAM.
We see that the marginal distributions for DrEAM are sparse and noisy; while the samples may
provide plausible estimates for integrated measures like various quantiles (as seen in Fig. 3.1, the
distributions clearly leave a lot to be desired. In contrast, the DRAM results in Fig. 3.4 show
smooth behaviors as may be expected from a multiGaussian distribution. Further, clearly, the
entire parameter space seems to have been well sampled.

To conclude, both DrEAM and DRAM draw samples which can used to calculate “integrated”
measures like medians, the higher quantiles etc reliably i.e., they provide results that agree with
each other, and to a large degree, with the true solution. However, higher statistical moments
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Figure 3.2.Top row: Empirical covariance matrices generated by
DrEAM (left) and DRAM (right). We see differences between the
two (the Frobenius norm of differences is 0.195). Bottom row: We
plot the analytical covariance matrix̂Γ on the left. We see signif-
icant differences with the covariance matrix generated by DrEAM
(Frobenius norm of difference is 0.705) and DRAM (Frobenius
norm of 0.68). In the bottom right subfigure, we plot the diag-
onal entries of the three covariance matrices (analytical, DrEAM
and DRAM). The differences between the analytical results and
the numerical one are large.
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or the more extreme quantiles may be suspect since the two methods obtain covariance matrices
which are quite different from the analytical solution. Thedistributions obtained by DrEAM are
not very realistic, whereas those constructed from DRAM samples “look” real. However, given the
discrepancy in the covariance matrix vis-à-vis analytical results, the distribution is approximate.

3.4.2 Comparison using a low-dimensional inverse problem

In this test, we use DrEAM and DRAM to solve a nonlinear soil moisture problem. We simulated
the time-dependent soil moisture volume fraction over a 20 week period, as described in Sec. 3.3.2.
The moisture values, at the end of every week, in the center ofgrid-blocks2, 4, . . . 8 were retained
as “observations”, after adding a measurement noise∼ N (0, 0.0052).

The aim of the test was to estimate the clay profile. The true clay profile and the soil-moisture
distribution (with depth) are shown in Fig. 3.5. We see that the clay profile shows shows a decreas-
ing trend, till about 1.75 m depth, at which point it becomes aconstant. This may be because the
last 1.75 meters are covered by a single grid-block in CLM4. The evolution of the soil moisture
profile over 20 weeks shows a progressive drying out, whereasthe lower depths barely change.
The richer dynamics in the upper reaches indicate that the clay profile may be inferred accurately
there, whereas the lack of information/dynamics in the lower grid-blocks (whose centers are shown
in the soil moisture profile as symbols) indicate that the inference may incur large errors there.

We propose a “truncated linear” clay profile model

f(x) =

{
a− bx if x ≥ c
a− bc if x < c

, (3.8)

with the aim of estimatingΘ = {a, b, c}. f(x) is the volume fraction of clay, as a function of depth
x. Both b andc are constrained to be positive, and so we infer their log-transformed counterparts
ln(b) andln(c). The three objects of inference (OOI) are assumed independent with normal priors,
whose specifics are listed in Table 3.1.

The problem is solved using both DrEAM and DRAM, using 40,000(DRAM) and 60,000 (DrEAM)
samples. Three chains were used for DrEAM. The convergence was monitored usingmcgibbsit
for the median of the distribution. In Fig. 3.6, top row, we plot the estimated clay profiles for
DrEAM (left) and DRAM (right). We see that the profiles generated using DrEAM are narrower.
This is reflected also in the posterior predictive test for the soil moisture at the end of Week 18
(Fig. 3.6, bottom row). It is clear from the posterior predictive check that the DrEAM results do
not predict the observations well; the median of the predictions are often quite far away from the
observations. Such a poor estimation, vis-à-vis DRAM is not unexpected; DrEAM with 3 chains
is not very different from a blocked MCMC scheme without proposal adaptation. We next use
the scores discussed in Sec. 3.1 to compare DrEAM versus DRAMwith respect to their predictive
skills. These are tabulated in Table 3.2; it is clear that while the DrEAM chains become inde-
pendent quicker (i.e., with about 30% fewer samples), the parameter estimation leaves a lot to be
desired.
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Figure 3.3. Marginals and joint distributions forx3, x5, x7, x9,
obtained via DrEAM. We also plot the PDFs for each variable,
which show a craggy behavior.
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Figure 3.4. Marginals and joint distributions forx3, x5, x7, x9,
obtained via DRAM. We also plot the PDFs for each variable,
which show a smooth, Gaussian behavior, as might be expected
of marginals of a multivariate Gaussian.
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Figure 3.5. Plot of the true clay profile (in green) and the evolu-
tion of the soil moisture profile over 20 weeks. We see a progres-
sive drying-out of the upper reaches of the soil, whereas the lower
depths hardly record any change. The symbols in the soil moisture
profiles indicate grid-block centers.
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Figure 3.6. Top: Estimated clay profiles (medians and quartiles)
obtained using DrEAM (left) and DRAM (right). The quartiles
and medians are calculated from the posterior predictive test for
the clay content in each grid-block independently. Bottom: The
results from the posterior predictive tests for the soil moisture at
the end of Week 18, as obtained from DrEAM (left) and DRAM
(right).
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Table 3.1. Specifics of the normal priors used for the log-
transformed variables for the “truncated linear” and “exponential”
clay profile parameters in Sec. 3.4.2. The third column contains
the mean and standard deviations of the normal distributions and
the last column the extreme values where the priors are truncated.
Length is measured in meters.

Variable Clay profile model (µ, σ) Max/min
a Truncated linear (30, 20) 50/15

ln(b) Truncated linear (ln(7 × 10−3), 3.0) ln(4 × 10−3)/ ln(1.0 × 10−2)
ln(c) Truncated linear (ln(1.5), 0.5) (ln(3.44)/ ln(1.0))

a Exponential (30, 20) 50/15
b Exponential (4, 3) 8/0.5

Table 3.2. Comparison of the predictive skill of DrEAM versus
DRAM. The last column indicates the number of iterations to con-
vergence, per chain, as measured bymcgibbsit. We see that the
predictive skill of the DRAM-fitted model is uniformly better.

Method CRPS MAE IS Iterations per chain
DrEAM 2.212 × 10−3 2.716 × 10−3 0.009959 12770
DRAM 1.869 × 10−3 2.6299 × 10−3 0.010075 18,286

CRPS, MAE and IS which, above, were used to gauge the predictive skills of models fitted with
DrEAM and DRAM, can also be used to discriminate between competing models. We demonstrate
this by proposing an exponential clay profile i.e.g(x) = a exp(−bx) and estimatingΘ = {a, b}.
The test described above is repeated withg(x) using DRAM. The priors for{a, b} are in Table 3.1.
Fig. 3.7 shows the inferred clay profile and the results of theposterior predictive test for soil
moisture at the end of Week 18. We see that the fitted clay profile deviates significantly from the
true one; further, comparing with Fig. 3.6, the uncertaintyin the inferred profile is larger than that
obtained using the “truncated linear” clay profile. The CRPS,MAE and IS scores of the posterior
predictive tests are, respectively,1.91 × 10−3, 2.98 × 10−3 and 0.006965. Comparing with the
scores for the “truncated linear” profile in Table 3.2, we seeclearly that the predictive skill of the
“exponential” profile is inferior, leading to its rejection.

3.4.3 Comparison using a high-dimensional inverse problem

Finally, we address the problem of high-dimensional inference. Noticing that the true clay profile
in Fig. 3.5 is rather irregular, we propose a Markov random field (MRF) [14] model for clay
profile. More precisely, we proposeh(x) = f(x; a, b, c) + δ, wheref(x) is the “truncated linear”
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Figure 3.7. Left: Inferred clay profiles using the “exponential”
clay profile model. The quartiles and medians are calculated from
the posterior predictive test for the clay content in each grid-block
independently. We see that the profile is significantly worse than
the profile inferred in Fig. 3.6. Right: we plot the results of the
posterior predictive test for soil moisture at the end of Week 18.
In comparison to the results from the “truncated linear” profile in
Fig. 3.6, the predictive skill of the exponential model is consider-
ably less.

clay profile in Eq. 3.8 andδ are deviations from it at each grid-block center. We model the discrete
form of δ with a 10-dimensional MRF. An MRF imposes a small degree of smoothness among the
elementsδi by imposing a likelihood function

P (δ|α) ∝ αm/2|H|1/2 exp

(
−

1

2
δTHδ

)
, (3.9)

wherem = 10 in our case,H is the precision matrix (symmetric, and positive semi-definite) andα
is the precision parameter. For any sitei on the 1D grid, the full conditional of anyδi is determined
by all others by the expression

δi|δ−i ∼ N

(
−

∑
j 6=i hijδj

hii

,
1

αhii

)
.

On a uniform 1D grid, the elements ofH are given by

hij =





−1 if i andj are indices of adjacent grid-blocks
0 if i andj are indices of non-adjacent grid-blocks
ni if i = j andni is the number of grid-blocks neighboringi

, (3.10)

In our particular case, we take the “mean” clay profile asf(x; â, b̂, ĉ), where the “hatted” values
indicate the MAP (maximuma posteriori) estimates obtained from the DRAM test in Sec. 3.4.2.α
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Table 3.3. Comparison of the predictive skill of DrEAM ver-
sus DRAM, using the MRF model. The last column indicates the
number of iterations to convergence, per chain, as measured by
mcgibbsit. We see that the predictive skill of the DrEAM-fitted
model is uniformly better, and at a far lower cost.

Method CRPS MAE IS Iterations per chain
DrEAM 3.98 × 10−4 2.8 × 10−4 0.001997 2,098
DRAM 1.41 × 10−3 9.2 × 10−4 0.0074 39,682

is set to 2. The parameters,Θ, to be estimated are the 10 elements ofδ. In order to accommodate
a stretched grid, we use a modified̃H which is constructed as follows.

We commence with an upper triangular forward difference matrix, D where the elementsdij are
given by

dij =





−1/li if i = j
1/li if j = i+ 1
0 otherwise

whereli is the distance between the centers of grid-blocksi andi+ 1. D calculates the first-order
forward finite-difference slopes of the field it is applied to. H̃ = DTD andδTHδ is the sum
of square of the slopes calculated at grid-block centers using a forward-difference operator. An
augmented likelihood functionLa is used in Eq. 3.3, formed by

La(y
obs|Θ) ∝ L(yobs|Θ)P (δ|α)

whereP (δ|α) is obtained from Eq. 3.9 andL from Eq. 3.3. The priorπ(δ) is modeled as i.i.d.
Gaussian (N (0, 3)) for all 10 elements ofδ.

In Fig. 3.8 we plot the inferred clay profiles, using the MRF model, as calculated using DrEAM and
DRAM. The DrEAM runs were computed with 10 chains. We see thatthe clay profiles computed
using DrEAM are tightly clustered around the true profile, vis-̀a-vis DRAM. This is reflected in the
posterior predictive test for the soil moisture at the end ofWeek 18 (bottom row), where the medi-
ans predicted by both DRAM and DrEAM agree with observations, with the DRAM-fitted model
predicting a wider scatter. In Fig. 3.9 and Fig. 3.10 we plot the marginals forδi, i = 3, 5, . . . 9.
We see that DRAM explores the parameter space densely, leading to smoother marginal posterior
distributions; the DrEAM equivalents are quite rough. Yetmcgibbsit and the Gelman-Rubin
statistic indicate that both the chains have converged.

Finally we use CRPS, MAE and IS to compute the accuracy of the posterior predictive tests using
DrEAM and DRAM, and compare the accuracy obtained against the computational cost. These
are summarized in Table 3.3. It is clear that the DrEAM results are about 3 times more accurate
that DRAM and were obtained with 20 times fewer samples (per chain). This is quite a surprise
given the rather unprepossessing marginals constructed using DrEAM samples in Fig. 3.9.
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Figure 3.8. Top row: Estimated clay profiles (medians and quar-
tiles) using the MRF model, as computed using DrEAM (left) and
DRAM (right). The quartiles and medians are calculated from the
posterior predictive test for the clay content in each grid-block in-
dependently. The true profile is also plotted. The DRAM pro-
files are more spread out. Bottom row: The posterior predictive
tests for soil moisture at the end of Week 18, as computed using
DrEAM (left) and DRAM (right). The wider spread of the clay
profiles as computed by DRAM translates into a wider scatter of
predicted soil moisture, as seen in the bottom right figure. The me-
dian soil moisture agrees with the observations, for both DrEAM
and DRAM.
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Figure 3.10. Marginals forδi, i = 3, 5, . . . 9, as computed from
the DRAM solutions. We see that the distributions are smooth,
and the scatter plots show dense exploration of the parameter
space. This is in contrast with the sparse exploration in Fig. 3.9
by DrEAM.
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3.5 Conclusions

We have conducted a study of how well (and efficiently) PDE models found in CLM4 could be
calibrated to data. Our focus was on developing model parameter estimates as distributions, so that
the uncertainties in the parameter estimates and model predictions could be rigorously evaluated.
Such distributions can be constructed by posing a Bayesian inverse problem and solving it using
an MCMC method. Due to computational expense of PDE models, our interest was on evaluating
multichain MCMC methods like DrEAM, which can be easily parallelized. We have chosen 3
separate problems, solved them using DrEAM and compared theresults with DRAM, a well-
establishedsingle-chainMCMC method.

Judging from the three problems, it is clear that the distributions developed by DrEAM are inferior
to DRAM, especially when the problem has few chains (around 5). When more chains are used,
the sampling by DrEAM improves, but does not quite equal DRAM. However, a better sampling
of the parameter space does not seem to result in fitted model with more predictive skill - in
a three-parameter problem, DrEAM was marginally less accurate (and about 30% cheaper, per
chain, computationally). In case of the 10-dimensional MRFmodel, DrEAM beat DRAM both in
accuracy and computational efficiency, by wide margins.

Our tests with the linear problem, where an analytical expression was available, show that both
DrEAM and DRAM are equally accurate when medians or quartiles are desired. However, the
covariance matrix constructed by the sampling schemes are quite different from the analytical so-
lution, though they are close to each other. Thus, it appearsthat the higher moments of distribution
generated by both the methods may be approximate. However, given the accuracy of the posterior
predictive tests in the MRF test, the subtle discrepancies may not matter greatly for most predic-
tive purposes. This does not hold true if the aim is to predictrare/extreme occurences e.g., for risk
analysis purposes.

Comparing the craggy PDFs generated by DrEAM with the smoother ones developed by DRAM
for the Markov random field problem (Figs. 3.9 versus 3.10) and the lnear problem (Figs. 3.3
versus 3.4), lead us to believe that the distributions developed by DrEAM may be suspect. Thus
investigating a method for reducing the computational timeof the serial DRAM algorithm may
be a worthwhile task. This can be partially accomplished by increasing the efficiency which with
DRAM explores a high dimensional parameter space, perhaps,as performed in [3], by using multi-
ple Metropolis-couled MCMC chains. Alternatively, one may also investigate the use of Ensemble
Kalman Filters (EnKF) to investigate the same inverse problem. EnKF are scalable and while they
make Gaussian assumptions about the posterior distribution, the currently uncertainty about what
the posterior distribution, as developed using different methods, suggest that the approximation
may be defensible.

Ultimately, the choice of a calibration method depends uponthe model in question and final goal of
calibration. If a single parameter value is desired, deterministic, optimization methods, e.g., those
in PEST [2], are far more efficient that the Bayesian methods described above. However, in keeping
with CSSEF’s focus on uncertainty quantification, point-estimates of parameters are unlikely to
contribute much (except, perhaps, as a starting guess for MCMC chains). In keeping with the
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contents of the Land UQ section (Sec.VI.3.2.2 in [1]), DRAM (or its Metropolis-coupled version),
in conjunction with surrogate models, may be most suitable.Gridded parameter estimation, also
with surrogate model, will require a multi-chain method, e.g., a parallelized implementation of
DrEAM, since some of the parameters may have to be modeled as random fields (thus increasing
the dimensionality of the inverse problem). Finally, parameter estimation using the full CLM4
model will require a parallel implementation of an EnKF (modified for parameter estimation),
which the CSSEF team does not currently have. As a first step, its applicability to the ZD problem,
and the comparison of its posterior distributions to DRAM and DrEAM should be explored.
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Part II

Land UQ
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Chapter 4

Polynomial Surrogate Construction for
Community Land Model

The Community Land Model (CLM) is the terrestrial component ofthe Community Earth System
Model (CESM), which is used extensively for projections of the future climate system. With
over 100 uncertain input parameters and strong nonlinearities, the CLM presents a number of
challenges for uncertainty quantification (UQ) methods. Besides, as a single run of the CLM
requires significant computational effort, constructing apolynomial surrogate model as a response
surface is a crucial component for performing both forward and inverse UQ.

4.1 Problem Formulation and Challenges

Consider an implementation of the Community Land Model (CLM) with d̃ input parameters,
λ1, . . . , λd̃, and a single scalar output quantity of interest (QoI)y = f(λ). Note that, due to input
dependencies, the number of physical input parametersd̃ may be different from the true number
of degrees of freedomd, hence the ‘tilde’ notation. Theforward functionf(·) is a determinis-
tic function that acts as a black box and replicates a single-site CLM simulation. Typically, our
methodology relies on CLM simulations at appropriately chosen input parameter regimes: these
runs are called training samples or training runs.

Our ultimate goal is two-fold:

• (forward) uncertainty quantification and global sensitivity analysis,

• (inverse) parameter inference and calibration.

Below we list major challenges that both forward and inverseuncertainty quantification (UQ)
methods face specific to the CLM:

• Parameter constraints: some parameters need to satisfy constraints imposed by their own
definition or physics.

51



• Curse of dimensionality: the number of input parameters is large (about eighty, in the de-
fault study), making both parameterization of input-output relationship and the input space
coverage challenging.

• Computational cost of the forward function: the CLM, even in the single-site mode, is ex-
pensive to run (a 1000-year simulation takes about 10 hours on a single processor), leading
to sparsityof the training data set.

We will focus on the forward UQ and sensitivity analyses, leaving the related inverse problem as
the next logical step, outside the scope of this report.

4.2 Community Land Model Input Parameters

Tables 4.1 and 4.2 present the list of CLM input parameters varied in our study. Besides range
restrictions the input parameters need to satisfy the following constraints, by definition, or in order
to remain consistent with associated physics:

λ18 < λ22,

λ30 + λ31 + λ32 = 1, (4.1)

λ33 + λ34 + λ35 = 1.

Besides the curse of dimensionality, the CLM input parameterset presents an additional challenge
as some input parameters are related by addition constraints. For example, there are parameter
triples (λi, λj, λk) that lie on a planeλi + λj + λk = 1, in addition to their respective range
constraints such asλi ∈ [ai, bi]. Another constraint that arises in the CLM input is a pair of
parameters that need to have specific orderλi < λj due to certain physics restrictions, again, in
addition to the range constraintsλi ∈ [ai, bi].

For example, Figure 4.1 illustrates a uniform sample set on apolygons that are obtained due to
constraintsλ33 + λ34 + λ35 = 1 andλ18 < λ22, respectively.

4.3 Rosenblatt Transformation

In this section, we introduce a transformation that maps input parameter vectorλ with dependent
or constrained components to a vector of i.i.d. uniform variablesη. This transformation is called
Rosenblatt transformation [18] and is essentially a generalization of the CDF transformation (1.4)
to multiple dimensions.

To clarify the upcoming notation, let us remove one input parameter from the triple(λi, λj, λk) for
each constraint of a formλi + λj + λk = 1, since one of the parameters in the triple is completely
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Table 4.1.CLM input parameters: part one

Notation Name Default Min Max Units Description

λ1 displar 0.67 0.1 1 m displacement length: canopy top
λ2 dleaf 0.04 0.01 0.1 m characteristic leaf dimension
λ3 mp 6 3 16 none slope of conductance to photosynthesis
λ4 qe25 0.06 0.04 0.08 umol C/umol phot Quantum efficiency
λ5 rholvis 0.07 0.01 1 none leaf reflectance (vis)
λ6 rholnir 0.35 0.01 1 none leaf reflectance (nir)
λ7 rhosvis 0.16 0.01 1 none stem relectance (vis)
λ8 rhosnir 0.39 0.01 1 none stem reflectance(nir)
λ9 taulvis 0.05 0.01 1 none leaf transmittance (vis)
λ10 taulnir 0.1 0.01 1 none leaf transmittance (nir)
λ11 tausvis 0.001 0.0001 0.01 none stem transmittance (vis)
λ12 tausnir 0.001 0.0001 0.01 none stem transmittance (nir)
λ13 xl 0.01 0.01 1 none leaf/stem orientation index
λ14 roota par 7 1 20 m-1 rooting distribution parameter
λ15 rootb par 2 0.5 10 m-1 rooting distribution parameter
λ16 slatop 0.01 0.08 0.12 m2/gC SLA at top of canopy
λ17 dsladlai 0.0012 0.001 0.007 m2/gC/LAI SLA/dLAI
λ18 leafcn 35 23 70 gC/gN leaf C to N ratio
λ19 flnr 0.05 0.04 0.1 none frac of leaf N in Rubisco
λ20 smpso −66000 −120000 −20000 mm soil water pot. at full opening
λ21 smpsc −255000 −300000 −120000 mm soil water pot. at closure
λ22 lflitcn 70 39 143 gC/gN leaf litter C:N
λ23 frootcn 42 25 85 gC/gN fine root C:N
λ24 livewdcn 50 25 75 gC/gN live wood C:N
λ25 deadwdcn 500 200 1400 gC/gN dead wood C:N
λ26 froot leaf 1 0.3 5 gC/gC new fine root alloc C /leaf C
λ27 stemleaf 1.5 0.6 5.3 gC/gC new stem alloc C per leaf C
λ28 croot stem 0.3 0.1 0.7 gC/gC new croot alloc C per stem C
λ29 flivewd 0.1 0.06 0.28 none fraction of new wood that is live
λ30 lf flab 0.25 0.14 0.54 none leaf litter labile fraction
λ31 lf fcel 0.5 0.37 0.49 none leaf litter cellulose fraction
λ32 lf flig 0.25 0.1 0.38 none leaf litter lignin fraction
λ33 fr flab 0.25 0.18 0.25 none fine root labile fraction
λ34 fr fcel 0.5 0.38 0.5 none fine root cellulose fraction
λ35 fr flig 0.25 0.16 0.36 none fine root lignin fraction
λ36 leaf long 1.5 2 10 yr leaf longevity
λ37 resist 0.12 0 0.5 none fire resistance index
λ38 grperc 0.3 0.2 0.4 none growth respiration factor 1
λ39 grpnow 1 0 1 none growth respiration factor 2
λ40 bdnr 0.25 0 0.8 (1/s) bulk denitrification rate

determined by the other two. With the appropriate shifting of the indices, we will be left with
d = d̃− nt input parameters, wherent is the number of input parameter triples that sum up to one.

Given a vector of random variablesλ = (λ1, . . . , λd) with known joint cumulative distribution
function (CDF)F (λ1, . . . , λd), one can obtain a set ofηi’s that are independent uniform random
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Table 4.2.CLM input parameters: part two

Notation Name Default Min Max Units Description

λ41 dayscrecover 300 1 90 days days to recover negative cpool
λ42 rc npool 100 0.5 50 none resistance for uptake from plant npool
λ43 br mr 2.53e − 06 4e − 07 1e − 05 gC/gN/s base rate for maintenance respiration
λ44 q10 mr 1.5 1 4.5 none q10 for maintenance respiration
λ45 cn s1 12 8 20 gC/gN carbon:nitrogen for SOM 1
λ46 cn s2 12 8 20 gC/gN carbon:nitrogen for SOM 2
λ47 cn s3 10 6 20 gC/gN carbon:nitrogen for SOM 3
λ48 cn s4 10 6 20 gC/gN carbon:nitrogen for SOM 4
λ49 rf l1s1 0.39 0.35 0.45 none resp. fraction for litter 1→ SOM 1
λ50 rf l2s2 0.55 0.385 0.715 none resp. fraction for litter 2→ SOM 2
λ51 rf l3s3 0.29 0 0.9 none resp. fraction for litter 3→ SOM 3
λ52 rf s1s2 0.28 0.26 0.3 none resp. fraction for SOM 1→ SOM 2
λ53 rf s2s3 0.46 0.032 0.6 none resp. fraction for SOM 2→ SOM 3
λ54 rf s3s4 0.55 0 1 none resp. fraction for SOM 3→ SOM 4
λ55 k l1 1.2 0.9 1.5 1/day decomp rate for litter 1
λ56 k l2 0.0726 0.05 0.1 1/day decomp rate for litter 2
λ57 k l3 0.0141 0.005 0.028 1/day decomp rate for litter 3
λ58 k s1 0.0726 0.038 0.11 1/day decomp rate for SOM 1
λ59 k s2 0.0141 0.005 0.022 1/day decomp rate for SOM 2
λ60 k s3 0.0014 0.0004 0.005 1/day decomp rate for SOM 3
λ61 k s4 0.0001 0 0.0004 1/day decomp rate for SOM 4
λ62 k frag 0.001 0.0002 0.005 1/day fragmentation rate for CWD
λ63 cwd fcel 0.769 0.66 0.81 none fraction of cellulose in CWD
λ64 dnp 0.01 0.001 0.1 none denitrification proportion
λ65 minpsi hr −10 −15 −5 MPa minimum psi for heterotrophic resp
λ66 q10 hr 1.5 1 4.5 none q10 for heterotrophic respiration
λ67 r mort 0.02 0.002 0.2 1/year mortality rate
λ68 sf minn 0.1 0.02 0.4 none solulble fraction of mineral N
λ69 crit dayl 39300 35000 45000 seconds critical daylength for senescence onset
λ70 ndayson 30 5 60 days no. of days to complete leaf onset
λ71 ndaysoff 15 5 40 days no. of days to complete leaf offset
λ72 fstor2tran 0.5 0.1 1 none fraction of strage to move to transfer
λ73 crit onsetfdd 15 5 30 days no. of freezing days to set GDD counter
λ74 crit onsetswi 15 5 30 days no. of water stress-free days for leaf onset
λ75 soilpsi on −2 −5 −0.75 MPa critical soil water potential for leaf onset
λ76 crit offset fdd 15 5 30 days no. of freezing days for leaf offset
λ77 crit offset swi 15 5 30 days no. of water stress days for leaf offset
λ78 soilpsi off −2 −5 −0.75 MPa critical soil water potential for leaf offset
λ79 lwtop ann 0.7 0.5 1 1/year live wood turnover proportion
λ80 gddfuncp1 4.8 3 7 none gdd threshold parameter 1
λ81 gddfuncp2 0.13 0.05 0.3 none gdd threshold parameter 2

variables on[−1, 1] for all i = 1, 2, . . . , d, using thescaledconditional cumulative distributions

η1 = R1(λ1)

η2 = R2|1(λ2|λ1)

η3 = R3|2,1(λ3|λ2, λ1) (4.2)
...

ηd = Rd|d−1,...,1(λd|λd−1, . . . , λ1).

Each mapR∗(·) is a scaled version of the corresponding CDFF∗(·) to ensureηi ∈ [−1, 1]. That is,
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Figure 4.1. Input parameter samples for some of the constrained
inputs.

R1(λ1) = 2F1(λ1) − 1 and, similarly, for the rest of the conditional CDFs in (4.2).

This map, denoted by the shorthand notationη = R(λ), is called theRosenblatt transformation
(RT) [18]. Note that the RT is not unique: by ordering theλi’s in different ways, one can obtaind!
different sets of uniform random variables.

The RT will be employed to map the input parameter samples from theλ-space to theη-space,
or [−1, 1]d. Note that the inverse RT can be used, say, when one needs to obtain CLM inputs
corresponding to quadrature points in[−1, 1]d, or when one needs to obtain uniformly distributed
samples in the constrained,λ-space.

4.4 Polynomial Basis Reduction via Bayesian Compressive Sens-
ing

In order to have proper coverage of the input parameter spacethat respects the constraints and uses
all available information, the training set of input parameters is taken to be uniformly distributed
on the constrained space. This is consistent with the maximum entropy principle, see [12], for
instance. With Rosenblatt transformation in place, which maps the input parametersλ to a uniform
random vectorη, one can build Polynomial Chaos expansion with respect toη, as described in
Section 1.1.1. In other words, the forward function is evaluated at the training input data set to
arrive at input-output pairs(λi, f(λi)) for i = 1, 2, . . . , N . With the RT in mind, we are seeking
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an expansion of the form

f̃c(η) ≈
K∑

k=0

ckΨk(η) (4.3)

to serve as a surrogate. In terms of the CLM input parameters, the surrogate will take the form

fc(λ) ≈
K∑

k=0

ckΨk(R(λ)). (4.4)

Table 4.3.CLM output quantities of interest

Notation Name Units Description

y1 TOTVEGC gC/m2 Total vegetation carbon
y2 TOTSOMC gC/m2 Total soil carbon
y3 GPP gC/m2/s Gross primary production
y4 ERR W/m2 Energy conservation error
y5 TLAI none Total leaf area index
y6 EFLX LH TOT W/m2 Total latent heat flux
y7 FSH W/m2 Sensible heat flux

We applied the iterative BCS algorithm of polynomial basis reduction, described in Section 1.1.3,
to the CLM with7 output quantities of interest (QoI), shown in Table 4.3. Foreach QoI, a10-year
average of a1000-year CLM simulation is taken.

Let us study the total vegetation carbon (output TOTVEGC) more closely. We rely onN = 987
training simulations sampled uniformly in the constrainedparameter space. We run the iterative
BCS algorithm starting with the second order (l0 = 2 and, therefore,3240 basis terms initially) up
to the fifth order. The first step reveals all the second order terms that are important if one had to
represent the forward function with only second order polynomial expansion. Figure 4.2(a) shows
a matrix of important dimensions and couplings for the resulting reduced second order basis. The
diagonal terms correspond to the sum of the logarithms of theabsolute values of the PC modes
corresponding to basis termsψ1(ηi) = ηi andψ2(ηi) = (3η2

i − 1)/2, while the off-diagonal terms
are the logarithms of the absolute values of the PC modes for the termsηiηj. For clarity of pre-
sentation, these joint PC modes are split to entries in the ‘matrix’ in Figure 4.2(a). Furthermore,
the iterative BCS algorithm is carried out up to the5-th order, leading to a PC representation with
only 226 terms. As a comparison, a second order,79-dimensional PC basis without reduction has
over3000 terms. Figure 4.2(b) shows the output values, sorted for more clear visualization, as well
as the PC representation values evaluated at the same training points. Note that, while the over-
all trend is captured, the strongly nonlinear behavior of the output renders the PC representation
imprecise in the regions with low or no vegetation, i.e. where the outputy1 ≈ 0. As can be seen
in Figure 4.2(b), about half of the samples lead to zero vegetation, i.e.y1 = 0. In principle, one
should identify the regions in the input parameter space that correspond to low vegetation and split
the input domain accordingly, leading to a mixture PC representation [19]. The study of such clas-
sification approaches in high-dimensional input spaces is outside the scope of the current report
and will be carried out in future.
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Figure 4.2. Important parameter couplings and reduced basis
representation for the output TOTVEGC.

Figure 4.4 reports the matrices of relevant input variable couplings for the other six QoIs, while
Table 4.4 shows the first10 important dimensions for each output by running a single, first order
BCS.

Table 4.4.Ten most important parameters for each output.

rank TOTVEGC TOTSOMC GPP ERR TLAI EFLX LH TOT FSH

1 r mort q10 mr leafcn k s4 froot leaf leafcn rholnir
2 q10 mr leafcn k s4 froot leaf q10 mr q10 mr q10 mr
3 froot leaf froot leaf froot leaf q10 hr q10 hr froot leaf leafcn
4 br mr br mr flnr fflnr leaf long k s4 br mr
5 q10 mr fflnr q10 mr q10 mr k s4 br mr flnr
6 leafcn dnp q10 hr dnp br mr flnr k s4
7 k s4 q10 hr dnp rf s3s4 dnp leaf long taulnir
8 stemleaf leaf long rf s3s4 leaf long stemleaf q10 hr froot leaf
9 flnr k s4 leaf long mp r mort rf s3s4 frootcn
10 dnp frootcn br mr bdnr rf s3s4 stemleaf f frag

4.5 Exploration of the parameter space

Several simulation ensembles were run to asses the behaviorof select model observables for a
range of values for relevant model parameters identified in by the BCS analysis described in Sec-
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tion 1.1.2. These model parameters are shown in Table 4.3. The initial conditions were generated
through three model spinup steps as outlined below:

• Accelerated decomposition (AD) spinup - a 600 year simulation with soil C and N pool
turnover times reduced by a factor of 20 to accelerate equilibration.

• Exit spinup - a one year simulation with normal C and N turnover times.

• Final spinup - a 1000 year simulation to re-equilibrate the model with the correct C and N
turnover time.

Time series for the total vegetation carbon (TOTVEGC), totalsoil carbon (totsomc) and total leaf
area index (TLAI), corresponding to AD and final spinup runs are shown in Fig. 4.4. The inset
plots zoom in on the last 30 years of the final spinup run. Despite the fact that the model did not
reach a quasi-steady state at the end of the final spinup, the decadal changes are small enough to
enable sensitivity studies using these results are initialconditions.

Starting with the model state at the end of the final spinup run, an ensemble of 49 runs was per-
formed to study the effect ofλ26 (“froot leaf”) andλ67 (“r mort”) parameters on the output ob-
servables of interest. The values for the other79 parameters out of the81 considered for this study
were set at the nominal values listed in Tables 4.1 and 4.2. The values forλ26 andλ67 were chosen
to span the physical ranges for these parameters, also listed in Tables 4.1-4.2.

Figure 4.5 shows average values for select CLM output observables. The averages are taken over
the last 10 years of 1000 year simulations for various pairs(λ26, λ67). These results show a shart
drop in vegetation for certain combinations ofλ26 andλ67) values. Time series for TOTVEGC
and TOTSOMC are shown in Fig. 4.6. These time series correspond to the runs shown with filled
circles in the same figure.

4.6 Porting CLM to Sandia

The CLM software framework was installed at SNL to enable proof-of-concept studies for model
calibration and uncertainty quantification. Several prerequisite software libraries were required
prior to building CLM. The HDF5 (version 1.8.5), netcdf (version 3.6.2), NCL (version 6) as well
as Python’s Numeric, Scientific.IO, Numpy, and Scipy modules were installed.

CLM was built using PGI compilers (version 9.0). Most of the high level build tasks are handled
by Python scripts included in the distribution. These scripts incorporate case-specific keywords
and generate directory trees with setup data, and executable files required for each simulation.
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Figure 4.3. Matrix of relevant input parameter couplings for six
different outputs
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Figure 4.5. CLM observables corresponding to an ensemble of
simulations spanning a 2D grid of “frootleaf” and “r mort” par-
tameter values. The ouput observables are averages over the last
10 years from 1000 year simulations.
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