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Abstract

In this report, we proposed, examined and implemented ajgpies for performing efficient uncer-
tainty quantification (UQ) in climate land models. Specificave applied Bayesian compressive
sensing framework to a polynomial chaos spectral expassgmhanced it with an iterative algo-
rithm of basis reduction, and investigated the results shrtedels as well as on the community
land model (CLM). Furthermore, we discussed constructioafdéient quadrature rules for for-
ward propagation of uncertainties from high-dimensionahstrained input space to output quan-
tities of interest. The work lays grounds for efficient fonddJQ for high-dimensional, strongly
non-linear and computationally costly climate models. &tuwer, to investigate parameter infer-
ence approaches, we have applied two variants of the Matkaw &onte Carlo (MCMC) method
to a soil moisture dynamics submodel of the CLM. The evalumatibthese algorithms gave us a
good foundation for further building out the Bayesian cadtibn framework towards the goal of
robust component-wise calibration.
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Chapter 1

Polynomial Surrogate Construction and
Dimensionality Reduction

We propose and implement a methodology for surrogate mauteitauction that approximates the
input-output relationship in a computationally intensigevard model. The surrogate model will

provide an inexpensive alternative to the complex modebih liorward uncertainty quantification

studies and in inverse problems where many forward moded ara required to infer reliable

estimates of input parameters. The methodology is thestiited for test problems. It has also
been applied to global sensitivity studies in the Communépd. Model (CLM).

1.1 Polynomial Surrogate Construction

The key to performing both forward and inverse UQ on compaomaily costly models is the
construction of aurrogatemodel that mimicks the input-output relationship. The sgate can be
evaluated quickly, thus allowing both efficient global savisy analysis strategies and parameter
calibration studies without having to run the complex fordvanodel itself impractically many
times.

1.1.1 Polynomial Chaos

Polynomial Chaos (PC) spectral expansions are employed teseqt the dependence of a Quan-
tity of Interest (Qol)y on an input parameter vector [7, 26], and to serve as a surrogate to a
computationally intensive forward model. In particuldrailows the input parameters to follow
arbitrary distributions. Indeed, we can view each of theuinparameters as random variables,
and consequently, the output Qol is a random variable as Wéills output random variable is
expanded in terms of an orthogonal set of polynomials of mdsted random variable with respect
to the density of the latter. Here, we employ Legendre-Unif@LU) PC expansions for simplic-
ity, as well as for an interpretation of the expansion singsya response surface or a polynomial
fit. The Legendre polynomial with a multi-indgx= (p1, pa, . . . , p4) iS @ multivariate polynomial
function ofd variables(n, s, . .., n4) = n defined by

Up(1) = p, (1)U (02) - - tpy (M), (1.1)
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wherey,, () is the standard one-dimensional Legendre polynomial ofesgg, for: = 1,2,...,d.
The sum of all degrees; + p> + - -+ + pgy is called the order of the multidimensional Legendre
polynomial (1.1).

Furthermore, the QaJ is represented with a polynomial expansion

K

y~yecn) =) aVi(n), (1.2)
k=0

where the scalar subscript typically corresponds to the graded lexicographic ordgrih the
multiindicesp [4]. The expansion (1.2) retains only polynomials of ordprtal, i.e. p; + ps +
-+ 4+ pg < [, leading to a total o + 1 = (d + 1)!/(d!l!) number of terms in the truncated
series (1.2). More generally, for a set of multi-indicgsone can write

K
y~ye(n) =Y cplp(n) =) cli(n), (1.3)
pes k=0

where the single indek corresponds tsomeordering of the multi-indices anfl’ + 1 = |S]|.

Typically, the input parameter vector and the random variable vectgr ~ Uniform|[—1, 1] are
related via the cumulative distribution function (CDF),(-) of each input parameter, assuming
they are independent,

772:2F/\1()\2)_17 fori=1,2,...,d. (14)

For example, when,; are assumed uniform on their respective interV@lsh;], one obtains

2 a7,—|—bZ
i = i — . 1.5
. bi_ai( : ) (L5)

Given simple maps (1.4) or (1.5), and without loss of gerigraine can identify\ with 7. In the
case of dependent input parameters, or in presence of aaittonstraints on input parameters,
one can generalize the CDF transformation (1.4) and utiheeRosenblatt transformation [18] to
obtain a set of independent uniform random variables asput.in

The problem of building the response surface that represiet input-output relationship now
reads as follows: given training model ruds = {(n,,y;)}Y.,, build a polynomial representa-
tion (1.3),i.e. find PC mode vectoe.

1.1.2 Bayesian Compressive Sensing

Bayesian methods are well suited to deal with incompletarsgpinformation [20]. Typically, the
outcome of a Bayesian approach consists of a posterior pildgpadistribution, describing our

14



knowledge of the quantities under study. Bayes formula@xciintext of inferring a PC expansion
for the quantities of interest, based on available dataan be written as

q(c) < Lp(e)p(e) (1.6)
Here the likelihood.,(c) is a measure of a goodness-of-fit of the polynomial represiemtto the
data. We will assume a gaussian noise model with standardtaevo to write

Lp(c) = (2r0) M2 exp (— i w) (1.7)

: 202
=1

The prior distributionp(c) incorporates any prior information on the object of infereni.e. the
PC mode vectoe. The posterior distribution(c) is the main outcome of the inference process,
and it corresponds to the current knowledge about the iefleralues ot: giventhe data seb.

While in principle, the Bayesian procedure outlined abovaeld@¢de used to determine the full
vector of coefficients: of all basis functions, this is in practice not always febesibf the Qoly
depends on many parameters, then its PC expansion (1.3)embry high dimensional, and if the
forward model is computationally expensive to evaluatentthe number of samples required to
determine all terms in this expansion would be prohibighvetpensive. Instead, quite often one is
given a fixed number of samples at random locations in thenpetier space, and the task becomes
to determine the best possible PC representation givenviitalble data. To this goal, we rely
on Bayesian Compressive Sensing (BCS) to determine a sparsklsesis functions that is best
supported by the data, as outlined below.

The key in inferring a sparse set of PC modes is the usagpansity priors that “encourage”
the modes to have nearly vanishing values, unless thermisgssupport in the data for those PC
modes. This leads to a sparse set of basis functions. A comsparsity prior is the Laplace prior
of a form

ple) = (A/2)" " eXp( AZ\CM) (1.8)

In this case thenaximum a posteriofiMAP) estimate of the object of inferenegi.e. the vector
c that maximizes the posterigfc), coincides with the solution of the optimization problem

arg max (log Lp(¢) — Alle[l1) (1.9)

Clearly, the prior distribution corresponds to theregularization term. The optimization prob-
lem (1.9) corresponds to the classical compressive seafgogithm that is extensively used in the
signal processing communit@][ The positive parametex controls the relative importance of the
penalty with respect to the goodness-of-fit. It is typicdiked at a user-defined value. In a hier-
archical Bayesian setting, however, it can be endowed wiha distribution and marginalized
over in the posterior distribution.

However, the Laplace prior distribution (1.8) does notwlkhe computation of the posterior dis-
tribution in a closed form. Instead, followin@]| we use a gaussian prior distribution of the form

K 2
p(e) x Hexp (—%) . (1.10)



Together with the likelihood (1.7), this choice of prior ¢ato a gaussian posterior distribution
with mean and variance, respectively,

p=Xwly and X =(¥'Ww+8)" (1.11)
whereW is aN x (K + 1) matrix with entries®,;;, = U, (n,) andS = diag(c?/s,...,0%/s%).

The likelihood variance? and the prior variances?, . . ., s%-) together form a vector diyperpa-
rameters Out of convenience, we will use a formal notatighfor the vector of prior variances. In
principle, one can construct a hierarchical Bayesian féathan with appropriate conjugate priors
for o2 and s? to obtain a closed form for the posterior distributionof Here, however, a less
complicated approach will be taken. Namely, the hyperpatars will be fixed at the values that
maximize theevidenceor the integrated likelihood

1 1
E(02,32):/ Lp(c;oH)p(e;s%)de o« o |C| 2 exp (—
RK—H

202

yTC‘ly) , (112

whereC =TI + S~ 197,

The maximization procedure fdf (o2, s?) essentially links Bayesian regression with the Rele-
vance Vector Machine (RVM) technique. An iterative procedfor maximizing E£(o?, s*) [?]
leads to very small values fai for somek’s, indicating that the evidence is maximized when the
prior for the corresponding coefficients becomes a deltatfan around 0, i.e. the corresponding
coefficients should be set to 0. The corresponding basispaijalsV, (-) are then dropped from
the basis set. Therefore, the procedure automaticallgtied@d retains the most important or rele-
vant basis terms. While the BCS tolerance parameter allovextieg smalls; values, in practice,
an additional down-selection is needed by retaining the figsterms from the list of basis terms
selected by BCS. This allows direct control on the number sidterms retained, in case one
needs to avoid overfitting or needs to have a bound on the baisis meet computational budget
constraints.

1.1.3 Iterative procedure with BCS

With a total order truncation and in the presence of a largaber of dimensions, one can not
afford to build an initial PC basis of order greater than ti@re we propose an iterative procedure
that allows increasing the order for the relevant basis $enhile maintaining the dimensionality
reduction. Namely, given a multi-index s§tcorresponding to the current basis, we add a basis
term only if it isadmissiblei.e. if by subtracting an order from each non-zero dimemsioe never
obtains a multi-index outside the s&t In other words,

p=(p1,...,pq) isadded taS, if p—e; € S, foralli =1,...,d, (1.13)
wheree; = (0,...,1,...,0) with 1 in the:-th position. The full algorithm then reads as follows:
e Step 0. LetS be a set of multi-indices with a total orderl,, wherel, is the initial PC order,
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e Step 1. Run the BCS algorithm to reduce the current basiS setS. If needed, retain only
first K, terms,

e Step 2. Enrich the current basis by all admissible basissema call the new basis multi-
index setS. Repeat from Step 1 until the maximal ordes reached.

The resulting representation reads as follows:
i) =Y cp¥p(n), (1.14)
Ppes

where the PC modas are described by a multivariate gaussian posterior of a goeality that
is equal to the cardinality af.

1.1.4 Error measure

We will consider two error measures, the goodness-of-fithef tesulting representation at the
N = N, training points or at randomly choseN,, validationpoints. In particular, we will rely on
a relativeL, error. More precisely, the validation error will be

By(c) = \/ZN gm) —ye(n)” 1.15)

zj'vzvl y(m)z

where the posterior mean PC mode vector is taken {cpes} with some ordering of the multi-
indicesp € S. The error at the training points;(c) is defined similarly. Note that our construction
leads to amuncertainresponse surface, since the polynomial representatidficestsc are asso-
ciated with a posterior probability distribution.

1.2 Test Results

1.2.1 Test 1: Analytically tractable case

Below we describe a very simple test case, where the redursd ban be seen a priori based on
the forward function. Namely, consideBadimensional function

flx,y,2) = 2® + ay® + 2° (1.16)

where the input vector is denoted gy= (x, y, z) for clarity of presentation. The function (1.16)
can be representezkactlyin Legendre polynomial basis withterms only. Namely,

F(2,,2) = b0 3U1(0) + 20(0) + 201(2) + s(2) + S (@)nly),  (LAD)
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where); () is the univariate Legendre polynomial of ordeor, in terms of a ‘dummy’ variable,

W=l wl)=t,  h)=5BP-1),  wh=s6F-3). (118

We run the BCS algorithm with an initial ordéy = 3 and without any additional iterations. The
3-rd order,3-dimensional polynomial basis correspond&dasis terms. The algorithm correctly
detects the only relevant terms. Namely, it detects andnethe samé basis terms that appear
in the exact expansion (1.17).

1.2.2 Test 2: Number of training runs necessary for reliable results

Consider a test function .
Y = exp (Z amz) : (1.19)
=1

where positive constants are picked to correspond to the ‘importance’ of thia dimension. In
other words, it is expected that the larger the value;ahe more relevant basis terms along the
i-th dimension are.

The sparsenessf available data is an essential issue and in principlelehgés the BCS proce-
dure. The following experiment will help determine how maamples are required to reliably
detect a lower dimensional structure in a high-dimensiolaah set. Let us take firgty,, dimen-
sions to be more important by an order of magnitude than theiingd — din, dimensions.
Namely, we take

_{1 if 1< i< dimp, (1.20)

and run the BCS procedure with = 1, i.e. first order polynomial basis and a very generous
tolerance. The goal of this simple test is to check whetherB&S algorithm picks the already-
known important dimensions before the rest of the dimerssioRor additional robustness, we
generatel 0 different sample sets each wifk; points, and declare success only if &l replica
tests have detected the fitgh, important dimensions correctly.

Table 1.1. Number of training runs needed to reliably detect a
lower-dimensional structure.

dimp d Nt
1 any | 20
2 any | 50
5 any | 130
10 | any| 980

18



In Table 1.1, we report the estimated number of training dasihat are necessary for a reliable
detection (i.e. no failures im0 replica runs) of the important dimensions for differentued of
the number of important dimensiodg,,. The total number of dimensioms as it turns out, is not
important. Clearly, the number of training runs necessamyetect low-dimensional structures in
the forward model depends on the dimensionality of thesedmaensional structures only, and is
independent of the total number of dimensions.

1.2.3 Test 3: Convergence for various model sparsities

Consider now a somewhat more realistic example, where therdifanal importances in (1.19)
change in a more gradual manner. Let us take

i M

d
(a) (b)

1
g 1 [ |e—e 16/50 sparsit]
- . . . 5 . [ |e—e 8/50 sparsity
g 16/50 spar3|ty,iat(|/50)15 ) [ 4150 sparsity| o«
g 8 + 8/50 sparsity, a(i/50) 5
5 . 35 o
Q.
S 6 4/50 sparsity, a(i/50) N
= ) 0.1}
[} = F
5 <
-8 0.4 Jo)
S 12
IS .y
=) 0.2 -~ - validation set (\=1000) 1
— training set  (I¥1000)
0 s eeeensstt : 0.01 —
10 20 30 20 50 10 20 50 100 200
Dimension, i Number of basis terms retained

Figure 1.1. (a) Dimensional importances chosen for three test
problems with varying degree of model sparsity. (b) The relative
Ls errors as functions of the basis cardinality for all three test prob-
lems computed at the training points and at the validation points.
At every iteration, the basis is enriched by adding all the admissi-
ble basis terms of one order higher, up to fourth order. Note the
logarithmic scale on both axes.

We fix the total dimensionality for this experimentdat 50 and varyM. In particular, we picked
three different values fak/ = 5, 15, 35, as illustrated in Figure 1.1(a). Clearly, for largef, more
relative importance is given to a fewer number of dimensiaes the effective lower-dimensional
space is smaller. Let us introduce a modparsitymeasure as the number of dimensions that
contribute to~ 90% of the total sum ofz;’s. It can be checked that th&/ = 5,15, 35 cases
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correspond to sparsities ©6, 8 and4, respectively. For example, fal = 35,

Zi>dd—4(i/d)M ~ 0.9
2 iz (1/d)M

(1.22)

As Figure 1.1(b) illustrates, a model with better sparsitg.( with a smaller number of important
dimensions) is represented better with the same numbeatiofrig runs. The relativé, error on a
validation set is a stricter test for the PC representatiwhieoften indicates overfitting. That s, the
relative error on the training points tends to decrease where basis terms (degrees of freedom)
are included, while the validation erréi,(c) could be increasing when more than necessary terms
are used to represent the current set of data.

1.2.4 Test 4: Dimensionality sorting study

Let us focus on thé/ = 15 case and illustrate further how the BCS algorithm detectsrthe
portant dimensions. The dialed-in dimensional important21 are randomly shuffled for the
purpose of illustration. The BCS algorithm is run only up teffiorder, with a very generous
tolerance. Therefore, eventually, all the dimensions ackegl as relevant. However, the RVM
optimization procedure clearly shows the order of impartanf the dimensions: the faster the
iterative procedure fog? converges, the more important theth basis term is. Figure 1.2 shows
the values of dimensional importances, as well as the orgaevHich the algorithm picks them.
With a stricter threshold, the BCS algorithm would stop eariccording to the red line shown
in the figure. This proof-of-concept demonstrates that tB&Bilgorithm detects the dimensional
importances in the expected sequence.

1.2.5 Test5: Study of the dependence on the total dimensionality

The following test case is meant to study the dependenceafdburacy of the final representation
on the dimensionality! of the input space. In particular, we used the test functiof©9) with
dimensional importances dialed-in according to 1.21 with= 10 and varyingd. Once again this
demonstrates that while)00 training points is sufficient to representl@-dimensional problem
with a reasonable low-dimensional structure well, it is s@rhat satisfactory for a0-dimensional
problem, and fails to a certain degree, i.e. overfits, whgmgrto build a representation for a
50-dimensional problem.
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Figure 1.2. Results of a first order BCS procedure withb@
dimensional test function any; = 1000 training samples. The
dimensional importances are shown with blue dots, while the se-
guence in which the procedure picks the important dimensions is
highlighted by the red lines joining the dots, starting from the top.
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Figure 1.3. Relative L, errors as functions of the basis cardi-
nality for a test problem computed at the training points and at
the validation points. At every iteration, the basis is enriched by
adding all the admissible basis terms of one order higher, up to
fifth order.
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Chapter 2

Efficient Sampling in Irregular Domains

2.1 Grids in Regular Domains

Building a PC surrogate for the CLM model requires numeriggdraximation of numerous pro-
jection integrals, and utilizes multidimensional quadratrules. Such multidimensional numerical
guadrature is often built up from one-dimensional quadeatules. A direct application of iter-
ated integration leads to a multidimensional tensor-pcodtid. More sophisticated combinations
of the univariate grids can lead to sparse grids which imgrite efficiency of the multivariate
guadrature for a given accuracy. This section will beginhvatdiscussion of one-dimensional
grids and conclude with a discussion on the Smolyak construof grids tailored for projecting
onto a prescribed basis.

2.1.1 One-dimensional Gauss-Patterson grids

The multidimensional rectangular grid sparse quadratuieased on a series of one-dimensional
Gauss-Patterson [15] quadrature rules. These formulaeested, and it was shown that addi-
tion of n + 1 points to am-point formulae yeilds an accuracy of degree approximately The
methodology for computing the recursively nested Gausadtae is described below.

Let ann-point quadrature formula be augmented witladditional points, and let,,,, by the
polynomial whose roots are the+ p abscissae of the new quadrature rule. A general polynomial
of degreen + 2p — 1 can be expressed as

p—1

Fryop1(2) = Quip-1(7) + Gryp(z) Z crPy(x) (2.1)

k=0

where@),.+,—1 is a general polynomial of degree+ p — 1 and P, is the Legendre polynomial of
orderk. Since(,+,-1 can always be integrated exactly by a- p-point quadrature, if

/Gn+p(x)Pk(x)d:U =0, k=0,1,...,p—1 (2.2)

then all polynomial of degrees-+ 2p — 1 can be integrated exactly by thet p-point quadrature.
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We start deriving the: + p formulae by first expanding,,., as

n—+p

Gp(®) = D ciPi(z) (2.3)

k=0
This expression is subsituted into eq. 2.2 leading to

n+p

Zci/ﬂ(x)Pk(a:)da:, k=0,1,...,p—1 (2.4)
1=0

This implies, due to orthogonality of Legendre polynomitatc, = 0 for k = 0,1,...,p — 1.
ThusG,, 4, can be rewritten as

[n/2]+1
Grip(z) = Z CkPok—2+p+q(T) (2.5)
k=1
whereq = n — 2[n/2]. Since the original abscissae of thgpoint formula,z;, j = 1,2,...,n are

also the roots of~,,,, a linear system can be assembled to compute theif8} ¢, coefficients
while the last coefficient;, 5.1 can be arbitrarily set ta.

[n/2]
Z CkP?k*2+P+q(xj) = _Pner(mj)? J=12,..., [n/Q] (26)

k=1

Once the coefficients, are computed, the quadrature points are the roots,af, given by ex-
pression (2.5).

The weights of the associated with the new p-point rule can be computed &3 [

wjoc/Lj(a:)da:, i=0,1,....,n+p (2.7)
- - - - n+p
whereL; is Lagrange interpolating polynomial of ordert p — 1, L;(z) = [] ==,
i=1 "7 "
i#j

The procedure above can be applied recursivelly, starfomgexample, with am-point Gauss-
Legendre rule and adding= n + 1 abscissae at every iteration.nf— 2n + 1, then the resulting
quadrature rule is of approximateldy./2 degree. The table below shows the abscissa and weights
for Gauss-Patterson rules obtained starting from a 3-ggauss-Legendre rule. Since the points
are symmetric with respect @ only the positive abscissae and weights are shown. Pledse n
that, for each recursion, the quadrature weights are cosolgfor all abscissae.
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Gauss-Legendrg-point rule

x: 0 0.77460
w : | 0.88889 0.55556
+4 points= Gauss-Pattersarnpoint rule
x: 0 0.43424 0.77460 0.96049
w: | 0.45092 0.40140 0.26849 0.10466
+8 points=- Gauss-Pattersorb-point rule
T 0 0.22339 0.43424 0.62110 0.77460 0.88846 0.96049 0.99383
w: | 0.22551 0.21916 0.20063 0.17151 0.13442 0.092927 0.0516aR.7002

2.1.2 Multivariate Quadrature and the Smolyak Construction

One approach to multivariate quadrature is to use one-diaeal rules iteratively over the dimen-
sions of the domain. This is equivalent to selecting a mailiate grid which is a tensor product
of one-dimensional rules. H points are used in each dfdimensions, then the integrand needs
to be evaluated ai? points. This is often many more than is needed for a givenracguvhen
the dimensionality! is high. Indeed, Smolyak introduced sparse grids which aseth on a sparse
tensor-product construction.

Sparse Grids

Let {(G,, W,.) }ner be a sequence of one-dimensional grids (indexef) byhere gridG), contains
k points, with quadrature weightd’, = (wi,w?,...,wy). Leta; be the accuracy ofGy, Wy,
that is, quadrature ofGy, W}) has no error for polynomials of ordew, (or less).

A full-tensor product gridl’ = @, (G, W,) = (GT,WT) has precisiony = (ay, ..., ),
meaning that quadrature @hfor each[z{*z5? - - - 2] with all ai, < @; has no error. In order faF

to have accuracy,,, then each; must be at least. In particular, a full-tensor grid with accuracy
a,, will have at least? points. For example, a full-tensor grid in 10 dimensionshvaitcuracy 5
will require at leasB!® = 59, 049 points!

Smolyak demonstrated the construction of quadrature guitls much fewer points than full-
tensor grids, each with the same accuracy. Consider twdefnor gridsA = (G#, W+) and
B = (G®,W?5), with precisiona and 3 respectively. Lety = min(«, 3) (the component-wise
minimum), and let”' = (G¢,We) = ®f:1(Gci,Wci) be the full-tensor grid with precisiof.
ThenA, B, C can be combined into a quadrature rdle= (G, W) with

G =GruGPuqGe, (2.8)
and the weight$)/* on these points such that

Qs =Qa+Qp—Qc (2.9)
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and precision set
o=aUp=A{(p,...,ps): €achp; < «; oreachp;, < 3;}. (2.10)

If the G, are nested (e.g. Gauss-Patterson or Clenshaw-Curtisfthexill have fewer points than
the full-tensor product of precisionax(a, 3).

This construction can be generalized to a sequence ofenfier grids{ A, }. In particular, a sparse
grid of accuracy is the minimal union of tensor grids of accuracy at least

Polynomial Projection

A sparse tensor-product construction for nonintrusivecgpé projection follows similarly. Each
integral in the spectral projection

f:Zfagpa fa:<f30a> (211)

may utilize a distinct quadrature rule. In order for the paijon to be exact whefiis a polynomial

of (multi-index) ordera, the quadrature must be exact on all polynomials of orderougnt In
particular, if it is knowna priori that f can be represented on a prescribed basis in multi-indices
{a; :i=1... N} then the projection can be computed efficiently on a (spapsewhich is exact

on indices

o=|Ja (2.12)

using the notation in (2.10). This approach provides a gridpfojection with many fewer points
(in general) than using a single grid suitable for all prtigts simultaneously.

2.2 Grids in Irregular Domains

One of the primary assumptions in the above constructionsidfivariate quadrature grids is
that the domain of the integrand is regular, that is, it canhbiéen as a tensor product of (one-
dimensional) intervals. In some models, such as CLM, the domm&nown to be irregular. One
approach we have investigated is mapping the irregular dotoa regular domain via a Rosenblatt
transformation. Another approach is to employ efficientdyature in the irregular domain directly.

The idea is to find a quadrature rul&, W) with grid G = (z1,..., 2y} (eachz; € RY) and
weightsiW = (wy, ..., wy) which is exact on the span of some bagis : j = 1,..., P} onthe
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domain(?,
N
Z e1(xi) wi = (1)
=1

N
Z p2(xi) w; = (p2)
(2.13)

N
Z pp(r:i) wi = (pp)
=1

such thatg; € Q.

The exactness constraint provides a syster®? @quations andV(d + 1) unknowns. Informally,
the quadraturéG, W) is said to beefficientif P ~ N(d + 1). Any additional constraints, such
as requiring the weights; be positive, may lead to grids which are less efficient (contain more
points). While sparse grids are easy to construct, they arergly contain more grid points than
efficient quadratures. For instance, the popular Clenshasis®parse quadrature h&s= N for
everyd.

The general conditions under which an efficient quadraturst®is not known. Furthermore,
when the dimensionality is large, the nonlinear system (2.13) is difficult to solveere for a
regular domain. Finding efficient quadrature rules for higinensional domains (both regular and
irregular) is the subject of future work.

2.2.1 Efficient Quadratures in Smolyak Construction

The domain of CLM is irregular, but can be written as the teqsoduct of a regular slice and a
sequence of irregular slices

Q=QreQ, @ & Q. (2.14)

This is due to constraints on some parameters. In partidilare are some triplets of parameters
which are required to be positive and sum to one, which reginat triplet to be bounded by a
triangular region in parameter space. In this case a quaeargtid can be constructed for the full

domain() via a sparse tensor-product of efficient grids on each slice.

This approach may benefit from utilizing nested sequencesiadiratures in the irregular domain
slices. We would expect, however, that a nestedness coristidl come at the cost of efficiency
(e.g. Gaussian quadrature grids are efficient in an intetual the nested Gauss-Patterson grids
need roughly twice as many points for the same order of acgiurdnvestigation of the relative
benefit of using nested quadratures is the subject of futor&.w
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Figure 2.1. Sparse quadrature of total order five on a triangular
prismT ® I using efficient quadratures in the triangle slicand
Gauss-Patterson quadrature in the intefvdatach green pointis a
first-order triangle quadrature. Each set of three blue dots, together
with the central green point, are third order grids. The six red
points, together with the central green point, constitute a fifth-order
grid in the triangle.
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Chapter 3

Models Calibration Using Multichain
Differential Evolution Monte Carlo
Methods

3.1 Introduction

The aim of this chapter is to investigate multichain sangplimethods as a means of fitting models
to data, to estimate the models’ parameters. Multichairhods for inverse problems, of which
parameter estimation is a classical example, are a relathew development. These methods
allow the estimation of model parameters as distributievtsch, in turn, allows the calculation
of the parameters’ uncertainties e.g., in the form of a mesdnevand a standard deviation. The
multichain nature of the technique allows a conceptualtypse path to parallelization, allowing
their use with computationally expensive models (in relato single-chain methods) e.g., coupled
sets of submodels currently implemented in the CommunitydUsliodel version 4 (CLM4) [5].
However, multichain methods have not been tested with thd kf nonlinear models that are
usually incorporated into Earth System Models, nor have fherformance been compared with
more established methods. Doing so forms the main thrusti@thapter. A secondary objective
is to develop methods for model selection, e.g., given twometing models which are fit to the
same data, which should one choose for further use (i.echwdne fits the data best)?

Calibration, or the fitting of models to data / observationsgasurements to estimate model pa-
rameters, is part of any scientific activity. Typically, oegtimates a single numerical value (also
known as a point estimate) for the model parameters, usbglininimizing anZ, norm of the
discrepancy between model predictions (for a proposedfsetodel parameter values) and ob-
servations. However, within the context of uncertainty mfifecation, point estimates are rather
irrelevant — the estimates usually do not provide any gtfiaation of the uncertainty (e.g., in the
form of “error bars”) directly and consequently, are usslesa study of the parametric uncer-
tainty of the model. Simply putting bounds on the variatiba onodel’'s parameters does not help;
the independent treatment of parametric uncertaintie$ tegparameter combinations which are
aphysical and for which the model may not be defined. Thuslagtitistic treatment of the model
parameters, where parameters estimates are defined abiitpli@nsity distributions (rather than
point values) is desired. A distribution also allows “ertiars” to be calculated easily; further, a
joint distribution of parameters specifies the combinatioh parameter values which are physi-
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cally meaningful.

A Bayesian formulation of an inverse problem [13] is a comrapproach when model parameters
are desired as distributions. A Bayesian inverse formahatiombines a likelihood function (the
probability £(y°**|@) of observing the datg°**, given a certain value of model parametes,
with prior beliefs regarding the value of the parameter®)), to obtain a posterior distribution of
the model parameters, conditioned on the data

P(Oly™) o« L(y**|©)r(©) (3.1)

The posterior distributio®(0|y°**) is constructed by drawing samples from it. Sineed|y°"*)

is usually an arbitrary distribution (as opposed to a welkwkn one like a Gaussian), specialized
samplers are required. Markov chain Monte Carlo (MCMC) metH8{isrre typically used for
this purpose. Since each sample requires a model evaluatitioh can be rather expensive in
case of physics models), efficiency of sampling becomesenfost concern. Adaptive MCMC
methods, e.g., the Delayed Rejection Adaptive Metrop@RAM, [11]), are being increasingly
used in parameter estimation, especially when the modebdenately intensive computationally
(e.g., 1D and small 2D partial differential equations (PPHs, 16]). However, DRAM draws
its samples sequentially i.e., it issingle-chainalgorithm, and the question arises whether the
computational expense can be divided among multiple chavhgch can subsequently be put
on separate processors. Note that there is no restrictidhense of garallelized modeivith
DRAM; our focus, instead, is on partitioning the samples aghprocessors.

Multichain methods: Multichain methods for solving Bayesian inverse problemesaclass of
global, stochastic optimization methods. In this study,wié restrict ourselves to the DrEAM
algorithm (“Differential Evolution Adaptive Metropolis'{25]), which is a generalization of DE-
MC (“Differential Evolution Markov Chain”, [21]). Both DE-M and DrEAM are related to a
class of Population Monte Carlo methods (see the literateweew in [21]), which have been
successfully used in hydrology research [22—24]. In DrEAMe simultaneously releases Markov
chains from an over-dispersed set of points in the paramsptare. These chains march in a manner
similar to traditional MCMC methods; the difference liesletmanner in which the proposals are
created. In order to construct a proposal for a chain, theaneimg chains (or a subset thereof) are
gathered into pairs (without replacement) and the diffeeaerector between the states in each chain
pair calculated. These difference vectors are combinedifferent manners, giving rise to variants
of the DE-MC and DrEAM algorithms) and scaled to calculate@psal. The combination of
states from various chains provides the correct oriemaifdhe proposal distribution; the DrEAM
algorithm determines the correct scaling. The proposattepted/rejected using an acceptance
probability, derived in much the same manner as converitid@VC methods.

The generation of proposals by combining the current sttewultiple, concurrent chains is quite
different from DRAM, which generates them from a multivéeigGaussian distribution. DRAM
keeps a running history of the sample chain, and the promhstibution’s covariance matrix is
periodically updated using it. Thus the history of the chainised to orient the proposal distri-
bution; its scaling follows arguments which are very simi@DrEAM. The use of a multivariate
Gaussian proposal makes DRAM very efficient when constiggtiosteriors which are similar
to Gaussians; however, in case of fat-tailed or multimodsiributions, mixing can be a prob-
lem. In principle, this shortcoming coming can be addresse®rEAM, but this pre-supposes
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an adequacy of concurrent chains from which an efficientgpmstcan be fashioned. Generally,
in DrEAM [25], the practice has been to have as many chaineesumber of parameters being
estimated.

This brief discussion of DrEAM and DRAM lead to two hypothgse

1. Forinverse problems where few (e.g., less than five) pat@amm are to be estimated i.e., low-
dimensional inverse problems, DRAM may be more efficienbtbaEAM. This is because
it is unlikely that an efficient proposal distribution canfashioned from a combination of 2
or 3 pairs of concurrent chains. This problem can be ameé&dray having many DrEAM
chains, even for low-dimensional problems, but this conteth@ cost of computational
efficiency visa-vis a single-chained DRAM approach.

2. As the dimensionality of the inverse problem increaseEAM may become more compet-
itive, especially for fat-tailed posterior distributians

Verifying these hypotheses forms the bulk of the study.

Model selection: Selecting between competing models fitted to the same datstiaightforward
task when parameters are estimated as point valueg;,therm of the discrepancy between data
and model prediction forms a convenient metric. The probemore involved when parameters
are evaluated as distributions. In [9, 10], Gneitelgal. derive metrics, predicated on posterior
predictive tests, that can be used to rank fitted models tondd on their ability to reproduce
observations. Basically, the model is evaluated usingmeter samples from the posterior dis-
tributions to create an ensemble of model predictions spording to measurements (i.e., we
conduct a posterior predictive test). One of the metrics ¢tha be simply calculated is the mean
absolute error (MAE) between the predictions and the data.the cumulative rank probability
score (CRPS), one calculates the difference between the GibRsi(ative distribution function)
of the model predictions and the measurement (denoted ap &usiction). The interval score (IS),
obtained using the interquartile range (IQR), forms yethaometric to gauge the (predictive) skill
of the posterior predictive test.

Note that all three metrics select between models basedeoprédictive skill of the fitted mod-
els. They do not distinguish between the complexity of theleh@and cannot detect over-fitting.
The conventional statistical tactic of proposing nestedi@®of increasing complexity and using
information theoretic criteria e.g., Akaike Informationitérion is rarely of much use in scientific
settings since few physically-based models are nestdierratompeting models reflect hypothe-
ses regarding the underlying physical processes govethagbservations. In such a setting,
predictive ability is often a sound basis for model selattio

We structure the study as follows. We will investigate DrEANd DRAM first within the context
of a linear problem which has an analytical solution. Thifl ellow us to gauge the difference
between the two “numerical’ solutions of the inverse prafde(as obtained from DRAM and
DrEAM) as well as their difference from the true solution. Wel then proceed to a test with
a nonlinear model of soil hydrology, to estimate the disttiiin of clay, as a function of depth,
using simple (2 or 3-parameter) models of the clay profilas Tll be followed by a test where a
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higher-dimensional model (a 10-parameter Markov randoid)fis used for the clay profile. We
expect that DRAM will outperform DrEAM in the low-dimensiahproblem, but a 10D problem
may be large enough for DRAM and DrEAM to be comparable.

The chapter is structured as follows. In Sec. 3.2 we derigeBhyesian inverse problem and
specify the error models. In Sec. 3.3 we describe the forvpaotblems. In Sec. 3.4, and its

subsections, we describe the modeling required to redecdithensionality of the inverse problem
and the method used to generate the synthetic data on wiedtvéhmethods were tested. We also
demonstrate the use of MAE, CRPS and IS to select between smodeSec. 3.5, we draw our

conclusions.

3.2 Formulating the inverse problem

Let M (©) be a model, with the paramete®which have to be estimated from a set of daté.

Both y°** and® are vectors, ang®* can be time-dependent. The model may not reproduce the
data exactly (there are errors arising from measuremermtdl@model’s shortcomings) and we
model the errors as i.i.d. Gaussians.

yo = M(©) + e, e ~N(0,0) (3.2)

Under these conditions, the probabilify{y°>¢|®) of observing the datg°**, given a given value
of model parameter®) is given by

L(y**|O®) o Hexp (—w) : (3.3)

o
=1
where{y;} = y°* are the elements in the data vector, which is of $izer is assumed known.

The prior beliefs regardin@ are modeled simply. We assume that the values of each comipone
of ® are independent and are modeled as Gaussians with larglasfateviations i.e., these are
vague priors, which allow the data to determine the paranvelees. Thus

7(©) = [ =6, (3.4)
j=1
wherem is the size of thé® = {6,} vector (i.e., the number of parameters to be estimated), and
7; are Gaussians. The exact specification of the pripendo are problem dependent and will be

mention for each of the tests in Sec. 3.4. Substituting E2ja8d Eq. 3.4 into Eq. 3.1 completes
the inverse problem formulation.

3.3 Description of the forward problems

We consider two forward problems, a linear one to check thei@cy of DRAM versus DrEAM
and a nonlinear one to compare their efficiency. These aibed below.
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3.3.1 Linear forward problem

We consider a unit domaift), 1] discretized with a uniform grid with 10 grid cells. A fieldis
described at the cell-centesvaries smoothly in space and is a sample drawn from a mukbiear
(10-dimensional) Gaussiak((0,T'), with a stationary covariance matrlx given by the correla-
tion functionC'(A;;) = exp(—A7;/A?). The correlation lengthh = 0.3 andA;; is the distance
between grid cell$ and;. The model predictiong are given byy = K;x, whereK, is a matrix.
The elements oK; were chosen randomly.

3.3.2 Soil moisture dynamics

The soil moisture dynamics model, also referred to as thg ZeDecker (ZD) model, is described
in [27]. Its incorporation into the CLM4 is described in Chapt Section 4 of [5]. CLM4
uses a highly stretched, 10-block grid to model subsurfgciediogical dynamics. This (almost
exponentially) stretched grid, which reaches 3.44 m belmvand surface, and the position of a
saturated zone (in case of a shallow water table) leads tencah instabilities when Richard’s
equation is solved using conventional PDE discretizatiwhtéme-integration techniques; the ZD
model is a reformulation, with a particular time-implic@grimulation that preserves stability. The

eqguation is written as
9 _ 0 Fau¢—¢@>

w_2 —Efﬁ—@ 3.5)

where¢ (mm? of water permm? of soil) is the soil moisture fraction) is the soil matric potential
[mm] and g is the equilibrium soil matric potential. Both andvx are complicated algebraic
functions of¢. The hydraulic conductivity is dependent on (via nonlinear algebraic relationships)
on the soil moisture fraction, and the volumetric conterglyme fractions) of clay, sand and
organic matter in the soil. The relationships are docunteimés]. ) captures the external flux of
moisture into the soil. This consists of precipitation,ssge of surface water and loss of moisture
from the subsurface via evapotranspiration. In our probmwill ignore the seepage of surface
water. Precipitation will follow observed data. Loss oflsmioisture via evapotranspiration is
modeled according to the models in Chapter 8, Section 1 (s&dmesistance) in [5].

The model was specialized to our site (Diablo plateau, ddstPaso, Texas). The only vegetation
considered in evapotranspiration was C4 grass (typical fabld plateau). The water table was
assumed to be deeper than 3.44 meter (i.e., the soil was adgarbe partially saturated). The grid
spacing, the true sand and clay profiles and precipitatiath@ged weekly, over a 20 week period)
were taken from [28] for the “dry-location” test case. Thegetranspiration profile (variation
with depth) is taken from [6].
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3.4 Tests

In this section, we first test the accuracy of the DrEAM and DRgolution in a problem with an
analytical solution (Sec. 3.4.1). We follow this up with attasing the nonlinear ZD model using
two simple clay profile models in Sec. 3.4.2. In the same gectve demonstrate the use model
selection scores (CRPS, MAE and IS) to select between the laygpeofile models. We finally
compare DrEAM versus DRAM with a 10-dimensional inverselyea in Sec. 3.4.3. The Mat-
lab code for DRAM was obtained from http://www.helsinkkfihjlaine/mcmc/. The Matlab code
for DrEAM was obtained from http://jasper.eng.uci.edtttsare.html. The samples were checked
for convergence (independence of the Markov chain) vianthgi bbsi t package (http://cran.r-
project.org/web/packages/mcgibbsit/) which is basechertheory in Chapter 7 of [8]. For multi-
chain DrEAM, the Gelman-Rubin statistic (Chapter 8 in [8]svedso used to monitor convergence.

3.4.1 Alinear inverse problem

We consider the 10-dimension linear problgm= K;x described in Sec. 3.3.1. We create a
synthetic data vector®®, y;?bs =vy;+e;, e ~N(0¢€), j=3,5...9 wheree=0.001Sso
that

y = Kx + e, (3.6)

where the sensitivity matri¥X contains rows3, 5, ... 9 of the matrixK. We model the inferred
solution x as a multivariate Gaussian drawn from a Gaussian posteistibaition i.e. X~
N (x,T'). We assume a prior(x) = N (x,, I'). The analytical expressions [17] f¢k, '} are

%o + TK” (KTK” + 5,) " (y* — Kx,)
I' = T -TK'(KIK” + S.)"'KT. (3.7)

>
Il

We setx, = 0 andS. = ¢°I and calculate the particulars of the posterior distributhd(x, f‘)
exactly.

The same problem is solved using DRAM and DrEAM. In both caS¢¥00,000 samples were
drawn by the two methods. DrEAM was run with 20 chains. We rhade= Lz, whereL is the
Cholesky decomposition df andz is a 10-dimension vector whose elements are i.i.d standard
normals. Samples (af) from the posterior distribution are converted into sarspbé x'. In
Fig. 3.1 we plot the true, the analytical solutiok and the median, 25th and 75th percentiles of
the estimate ok calculated using DRAM and DrEAM. We see that the numericalilts agree
very closely with each other, as well as with the analytiesiutts. Thel., norm of the difference
between the numerical and the analytical one are 0.275 (DRAM) and 0.2588 (DrEAM)IST
conveys the impression that distributions e.g., the cavae matrices may also agree with the
analytical result. In Fig. 3.2 (top row), we plot the DRAM abdEAM covariance matrices.
We see that they are symmetric but do not agree with each ettier Frobenius norm of the
difference between the DrEAM and DRAM covariance matriee8.195. In the bottom row, left,
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Comparison of X in each cell (Anlytical, DRAM and DrEAM)
2 T T T T T T T T

15k N @ Truth i
E§ N\ AN + Best estimate (analytical)
N X
N & N —(©-25PC (DRAM)
S \E‘ N — — — Median (DRAM)
1r @\\ NG e — [E] - 75 PC (DRAM) q
S \@ RSN ~ (- 25 PC (DrEAM)
N
N N — — — Median (DrEAM)

— [F] - 75 PC (DrEAM)

5 6 7 8 9 10
Cell #

Figure 3.1. Comparison of the true (thick line), x (crosses)
and the inferences calculated using DRAM (in blue) and DrEAM
(in red). We see that the median of tkesamples are very close
to the analytical result, regardless of whether DRAM or DrEAM
was used. The 25th and 75th percentiles also show very little dif-
ferences. Thd, norm of the difference between the numerigal
and the analytical one are 0.275 (DRAM) and 0.2588 (DrEAM).

we plot the analytical results. Comparing with the top row,see that neither the DRAM nor the
DrEAM solutions are close to the analytical result. The fermbs norm of the difference between
the empirical covariance matrices and the analytical oreda&88 (DRAM) and 0.705 (DrEAM).
Thus the two empirical covariance matrices are closer tb e#teer than they are to the analytical
solution. In the bottom right subfigure, we plot the diagagiaments of the analytical, DRAM and
DrEAM covariance matrices. While the DrEAM and DRAM solutioagree (to a degree), they
are quite different from the analytical solution, reinfioig the conclusions obtained by comparing
the covariance matrices.

In Figs. 3.3 and 3.4, we plot the marginals gt =5, x7, 9 as obtained from DrEAM and DRAM.
We see that the marginal distributions for DrEAM are sparse @oisy; while the samples may
provide plausible estimates for integrated measures bk®us quantiles (as seen in Fig. 3.1, the
distributions clearly leave a lot to be desired. In contrds¢ DRAM results in Fig. 3.4 show
smooth behaviors as may be expected from a multiGaussiambdion. Further, clearly, the
entire parameter space seems to have been well sampled.

To conclude, both DrEAM and DRAM draw samples which can usedalculate “integrated”
measures like medians, the higher quantiles etc reliably they provide results that agree with
each other, and to a large degree, with the true solution. eédewy higher statistical moments
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Figure 3.2. Top row: Empirical covariance matrices generated by
DreAM (left) and DRAM (right). We see differences between the
two (the Frobenius norm of differences is 0.195). Bottom row: We
plot the analytical covariance matrix on the left. We see signif-
icant differences with the covariance matrix generated by DrEAM
(Frobenius norm of difference is 0.705) and DRAM (Frobenius
norm of 0.68). In the bottom right subfigure, we plot the diag-
onal entries of the three covariance matrices (analytical, DrEAM
and DRAM). The differences between the analytical results and
the numerical one are large.
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or the more extreme quantiles may be suspect since the twwonhgebbtain covariance matrices
which are quite different from the analytical solution. Tdistributions obtained by DrEAM are
not very realistic, whereas those constructed from DRAMam“look” real. However, given the
discrepancy in the covariance matrix \dsvis analytical results, the distribution is approximate

3.4.2 Comparison using a low-dimensional inverse problem

In this test, we use DrEAM and DRAM to solve a nonlinear soiistre problem. We simulated
the time-dependent soil moisture volume fraction over a 28kiperiod, as described in Sec. 3.3.2.
The moisture values, at the end of every week, in the centgridfblocks2, 4, . .. 8 were retained
as “observations”, after adding a measurement neigé (0, 0.0052).

The aim of the test was to estimate the clay profile. The trag plofile and the soil-moisture
distribution (with depth) are shown in Fig. 3.5. We see thatdlay profile shows shows a decreas-
ing trend, till about 1.75 m depth, at which point it become®astant. This may be because the
last 1.75 meters are covered by a single grid-block in CLM4e &holution of the soil moisture
profile over 20 weeks shows a progressive drying out, whetlga$ower depths barely change.
The richer dynamics in the upper reaches indicate that thepriofile may be inferred accurately
there, whereas the lack of information/dynamics in the logvil-blocks (whose centers are shown
in the soil moisture profile as symbols) indicate that theiahce may incur large errors there.

We propose a “truncated linear” clay profile model

a—br ifxz>c

f(x):{a—bc fez<ec’ (3.8)

with the aim of estimatin® = {a, b, c}. f(z) is the volume fraction of clay, as a function of depth
x. Bothb andc are constrained to be positive, and so we infer their loggi@rmed counterparts
In(b) andIn(c). The three objects of inference (OOI) are assumed indep¢mdéh normal priors,
whose specifics are listed in Table 3.1.

The problem is solved using both DrEAM and DRAM, using 40,dDBAM) and 60,000 (DrEAM)
samples. Three chains were used for DrEAM. The convergeasewonitored usingtgi bbsi t

for the median of the distribution. In Fig. 3.6, top row, wepthe estimated clay profiles for
DrEAM (left) and DRAM (right). We see that the profiles gerntechusing DrEAM are narrower.
This is reflected also in the posterior predictive test fa foil moisture at the end of Week 18
(Fig. 3.6, bottom row). It is clear from the posterior predie check that the DrEAM results do
not predict the observations well; the median of the préafist are often quite far away from the
observations. Such a poor estimation, &isis DRAM is not unexpected; DrEAM with 3 chains
is not very different from a blocked MCMC scheme without pregloadaptation. We next use
the scores discussed in Sec. 3.1 to compare DrEAM versus DRAIVrespect to their predictive
skills. These are tabulated in Table 3.2; it is clear thatlevthe DrEAM chains become inde-
pendent quicker (i.e., with about 30% fewer samples), tharpater estimation leaves a lot to be
desired.
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Figure 3.3. Marginals and joint distributions fars, z5, z7, z9,
obtained via DrEAM. We also plot the PDFs for each variable,
which show a craggy behavior.
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obtained via DRAM. We also plot the PDFs for each variable,
which show a smooth, Gaussian behavior, as might be expected

of marginals of a multivariate Gaussian.
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Evolution of soil mositure content from May 1st to Sept 30th
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Figure 3.5. Plot of the true clay profile (in green) and the evolu-
tion of the soil moisture profile over 20 weeks. We see a progres-
sive drying-out of the upper reaches of the soil, whereas the lower
depths hardly record any change. The symbols in the soil moisture
profiles indicate grid-block centers.
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Figure 3.6. Top: Estimated clay profiles (medians and quartiles)
obtained using DrEAM (left) and DRAM (right). The quartiles
and medians are calculated from the posterior predictive test for
the clay content in each grid-block independently. Bottom: The
results from the posterior predictive tests for the soil moisture at
the end of Week 18, as obtained from DrEAM (left) and DRAM

(right).
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Table 3.1. Specifics of the normal priors used for the log-
transformed variables for the “truncated linear” and “exponential”
clay profile parameters in Sec. 3.4.2. The third column contains
the mean and standard deviations of the normal distributions and
the last column the extreme values where the priors are truncated.
Length is measured in meters.

Variable | Clay profile model (14, 0) Max/min
a Truncated linear (30, 20) 50/15
In(b) Truncated linear | (In(7 x 1073),3.0) | In(4 x 1073)/In(1.0 x 1072)
In(c) Truncated linear (In(1.5),0.5) (In(3.44)/In(1.0))
a Exponential (30, 20) 50/15
b Exponential 4, 3) 8/0.5

Table 3.2. Comparison of the predictive skill of DFEAM versus
DRAM. The last column indicates the number of iterations to con-
vergence, per chain, as measureaibgi bbsi t . We see that the
predictive skill of the DRAM-fitted model is uniformly better.

Method CRPS MAE IS Iterations per chair
DrEAM | 2.212 x 1073 | 2.716 x 103 | 0.009959 12770
DRAM | 1.869 x 1073 | 2.6299 x 1073 | 0.010075 18,286

CRPS, MAE and IS which, above, were used to gauge the pregliskils of models fitted with
DrEAM and DRAM, can also be used to discriminate between @mg models. We demonstrate
this by proposing an exponential clay profile igx) = aexp(—bx) and estimating® = {a, b}.
The test described above is repeated with) using DRAM. The priors fo{a, b} are in Table 3.1.
Fig. 3.7 shows the inferred clay profile and the results of gheterior predictive test for soil
moisture at the end of Week 18. We see that the fitted clay prdéviates significantly from the
true one; further, comparing with Fig. 3.6, the uncertaintyhe inferred profile is larger than that
obtained using the “truncated linear” clay profile. The CR®M8E and IS scores of the posterior
predictive tests are, respectively91 x 1073, 2.98 x 1072 and 0.006965. Comparing with the
scores for the “truncated linear” profile in Table 3.2, we skarly that the predictive skill of the
“exponential” profile is inferior, leading to its rejection

3.4.3 Comparison using a high-dimensional inverse problem

Finally, we address the problem of high-dimensional infieee Noticing that the true clay profile
in Fig. 3.5 is rather irregular, we propose a Markov randondf@IRF) [14] model for clay
profile. More precisely, we proposgz) = f(x;a,b,c) + &, wheref(x) is the “truncated linear”
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Inferred and true clay profiles. Obs @ layers [2,4,6,8]
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Figure 3.7. Left: Inferred clay profiles using the “exponential”
clay profile model. The quartiles and medians are calculated from
the posterior predictive test for the clay content in each grid-block
independently. We see that the profile is significantly worse than
the profile inferred in Fig. 3.6. Right: we plot the results of the
posterior predictive test for soil moisture at the end of Week 18.
In comparison to the results from the “truncated linear” profile in
Fig. 3.6, the predictive skill of the exponential model is consider-
ably less.

clay profile in Eq. 3.8 and are deviations from it at each grid-block center. We modeldiscrete
form of § with a 10-dimensional MRF. An MRF imposes a small degree aathmess among the
elements); by imposing a likelihood function

P(8|a) o< ™2 |H|Y? exp (—%JTH(S) : (3.9)

wherem = 10 in our caseH is the precision matrix (Ssymmetric, and positive semi-defjranda
is the precision parameter. For any siten the 1D grid, the full conditional of any is determined
by all others by the expression

2z g0 1
516 ~ _ =7 .
i N( - ,&hii)

On a uniform 1D grid, the elements Bf are given by

—1 if 7 andj are indices of adjacent grid-blocks
hi; = ¢ 0 if ¢ andy are indices of non-adjacent grid-blocks , (3.10)
n; if 1 = j andn; is the number of grid-blocks neighboririg

In our particular case, we take the “mean” clay profilefés; a, b, ¢), where the “hatted” values
indicate the MAP (maximura posterior) estimates obtained from the DRAM test in Sec. 3.4.2.
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Table 3.3. Comparison of the predictive skill of DIEAM ver-
sus DRAM, using the MRF model. The last column indicates the
number of iterations to convergence, per chain, as measured by
ncgi bbsi t . We see that the predictive skill of the DrEAM-fitted
model is uniformly better, and at a far lower cost.

Method CRPS MAE IS Iterations per chain
DrEAM | 3.98 x 10~* | 2.8 x 10~* | 0.001997 2,098
DRAM | 1.41 x 1073 | 9.2 x 107* | 0.0074 39,682

is setto 2. The paramete®®, to be estimated are the 10 element$ ofn order to accommodate
a stretched grid, we use a modifiebwhich is constructed as follows.

We commence with an upper triangular forward differencermaD where the elements; are
given by

—1/l; ifi=j
0 otherwise

wherel; is the distance between the centers of grid-blacksd: + 1. D calculates the first-order
forward finite-difference slopes of the field it is applied tH = D7D andé”H4 is the sum
of square of the slopes calculated at grid-block centensguaiforward-difference operator. An
augmented likelihood functiod, is used in Eqg. 3.3, formed by

La(y™*|©) oc L(y*"|©)P(8]a)

where P(d|«) is obtained from Eq. 3.9 and from Eq. 3.3. The priorr(d) is modeled as i.i.d.
Gaussian{/ (0, 3)) for all 10 elements 08.

In Fig. 3.8 we plot the inferred clay profiles, using the MRFd®h as calculated using DrEAM and
DRAM. The DrEAM runs were computed with 10 chains. We see tithaiclay profiles computed
using DrEAM are tightly clustered around the true profiles-&ivis DRAM. This is reflected in the
posterior predictive test for the soil moisture at the entiMeek 18 (bottom row), where the medi-
ans predicted by both DRAM and DrEAM agree with observatiovith the DRAM-fitted model
predicting a wider scatter. In Fig. 3.9 and Fig. 3.10 we ph&t marginals fov;,: = 3,5,...9.
We see that DRAM explores the parameter space denselynfgamismoother marginal posterior
distributions; the DrEAM equivalents are quite rough. ¥etgi bbsi t and the Gelman-Rubin
statistic indicate that both the chains have converged.

Finally we use CRPS, MAE and IS to compute the accuracy of tseepor predictive tests using
DrEAM and DRAM, and compare the accuracy obtained agairesttdmputational cost. These
are summarized in Table 3.3. It is clear that the DrEAM resate about 3 times more accurate
that DRAM and were obtained with 20 times fewer samples (pain). This is quite a surprise
given the rather unprepossessing marginals constructed DsEAM samples in Fig. 3.9.
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Figure 3.8. Top row: Estimated clay profiles (medians and quar-
tiles) using the MRF model, as computed using DrEAM (left) and
DRAM (right). The quartiles and medians are calculated from the
posterior predictive test for the clay content in each grid-block in-
dependently. The true profile is also plotted. The DRAM pro-
files are more spread out. Bottom row: The posterior predictive
tests for soil moisture at the end of Week 18, as computed using
DreAM (left) and DRAM (right). The wider spread of the clay
profiles as computed by DRAM translates into a wider scatter of
predicted soil moisture, as seen in the bottom right figure. The me-
dian soil moisture agrees with the observations, for both DrEAM

and DRAM.
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Figure 3.9.

Marginals ford;, i

3,5,...9, as computed from

the DrEAM solutions. We see that the distributions are craggy,
and the scatter plots are sparse. However, the 10 chains provide a
far fuller sampling of the space, compared to Fig. 3.3.
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.9, as computed from

the DRAM solutions. We see that the distributions are smooth,
and the scatter plots show dense exploration of the parameter
space. This is in contrast with the sparse exploration in Fig. 3.9

by DrEAM.
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3.5 Conclusions

We have conducted a study of how well (and efficiently) PDE et®dound in CLM4 could be
calibrated to data. Our focus was on developing model paemrastimates as distributions, so that
the uncertainties in the parameter estimates and modeilcgimt could be rigorously evaluated.
Such distributions can be constructed by posing a Bayesiaaise problem and solving it using
an MCMC method. Due to computational expense of PDE modetsntarest was on evaluating
multichain MCMC methods like DrEAM, which can be easily p&tted. We have chosen 3
separate problems, solved them using DrEAM and comparedethdts with DRAM, a well-
establisheaingle-chainMCMC method.

Judging from the three problems, it is clear that the distidns developed by DrEAM are inferior
to DRAM, especially when the problem has few chains (aroundMhen more chains are used,
the sampling by DrEAM improves, but does not quite equal DRAMwever, a better sampling
of the parameter space does not seem to result in fitted matkelmore predictive skill - in

a three-parameter problem, DrEAM was marginally less ateuand about 30% cheaper, per
chain, computationally). In case of the 10-dimensional MRdtlel, DrEAM beat DRAM both in
accuracy and computational efficiency, by wide margins.

Our tests with the linear problem, where an analytical exgien was available, show that both
DrEAM and DRAM are equally accurate when medians or quariilee desired. However, the
covariance matrix constructed by the sampling schemesuaie djfferent from the analytical so-
lution, though they are close to each other. Thus, it apgbatghe higher moments of distribution
generated by both the methods may be approximate. Howaven the accuracy of the posterior
predictive tests in the MRF test, the subtle discrepanciag mot matter greatly for most predic-
tive purposes. This does not hold true if the aim is to predict/extreme occurences e.g., for risk
analysis purposes.

Comparing the craggy PDFs generated by DrEAM with the smeahes developed by DRAM
for the Markov random field problem (Figs. 3.9 versus 3.10) #me Inear problem (Figs. 3.3
versus 3.4), lead us to believe that the distributions dpexl by DrEAM may be suspect. Thus
investigating a method for reducing the computational toh¢he serial DRAM algorithm may
be a worthwhile task. This can be partially accomplishedrayaasing the efficiency which with
DRAM explores a high dimensional parameter space, perlaagserformed in [3], by using multi-
ple Metropolis-couled MCMC chains. Alternatively, one madsceinvestigate the use of Ensemble
Kalman Filters (EnKF) to investigate the same inverse @oblEnKF are scalable and while they
make Gaussian assumptions about the posterior distrigutie currently uncertainty about what
the posterior distribution, as developed using differeethnds, suggest that the approximation
may be defensible.

Ultimately, the choice of a calibration method depends upermodel in question and final goal of
calibration. If a single parameter value is desired, detaistic, optimization methods, e.g., those
in PEST [2], are far more efficient that the Bayesian meth@sdsdbed above. However, in keeping
with CSSEF’s focus on uncertainty quantification, poinireates of parameters are unlikely to
contribute much (except, perhaps, as a starting guess for ®ICN&ains). In keeping with the
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contents of the Land UQ section (Sec.VI.3.2.2 in [1]), DRAM its Metropolis-coupled version),
in conjunction with surrogate models, may be most suitaliedded parameter estimation, also
with surrogate model, will require a multi-chain methody.ea parallelized implementation of
DrEAM, since some of the parameters may have to be modelemhde®m fields (thus increasing
the dimensionality of the inverse problem). Finally, paeden estimation using the full CLM4
model will require a parallel implementation of an EnKF (rifeedl for parameter estimation),
which the CSSEF team does not currently have. As a first stegpijtlicability to the ZD problem,
and the comparison of its posterior distributions to DRAMI&TEAM should be explored.
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Chapter 4

Polynomial Surrogate Construction for
Community Land Model

The Community Land Model (CLM) is the terrestrial componenthef Community Earth System
Model (CESM), which is used extensively for projections oé fiuture climate system. With
over 100 uncertain input parameters and strong nonlinesyithe CLM presents a number of
challenges for uncertainty quantification (UQ) methods.si@es, as a single run of the CLM
requires significant computational effort, constructingodynomial surrogate model as a response
surface is a crucial component for performing both forwand averse UQ.

4.1 Problem Formulation and Challenges

Consider an implementation of the Community Land Model (CLMjhwi input parameters,
A1, ..., Az and a single scalar output quantity of interest (Qo#: f(A). Note that, due to input
dependencies, the number of physical input parametenay be different from the true number
of degrees of freedomi, hence the ‘tilde’ notation. Thé&rward functionf(-) is a determinis-
tic function that acts as a black box and replicates a sisgeCLM simulation. Typically, our
methodology relies on CLM simulations at appropriately @mwsput parameter regimes: these
runs are called training samples or training runs.

Our ultimate goal is two-fold:

¢ (forward) uncertainty quantification and global sensiyianalysis,

e (inverse) parameter inference and calibration.

Below we list major challenges that both forward and inveuseertainty quantification (UQ)
methods face specific to the CLM:

e Parameter constraints: some parameters need to satis§yraioms imposed by their own
definition or physics.
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e Curse of dimensionality: the number of input parametersrigeldabout eighty, in the de-
fault study), making both parameterization of input-outpalationship and the input space
coverage challenging.

e Computational cost of the forward function: the CLM, even ia #ingle-site mode, is ex-
pensive to run (a 1000-year simulation takes about 10 hauessingle processor), leading
to sparsityof the training data set.

We will focus on the forward UQ and sensitivity analysesyieg the related inverse problem as
the next logical step, outside the scope of this report.

4.2 Community Land Model Input Parameters

Tables 4.1 and 4.2 present the list of CLM input parametergdan our study. Besides range
restrictions the input parameters need to satisfy thevialig constraints, by definition, or in order
to remain consistent with associated physics:

Mg < A,

Besides the curse of dimensionality, the CLM input paramstepresents an additional challenge
as some input parameters are related by addition consrakur example, there are parameter
triples (\;, \;, \x) that lie on a plane\; + A\; + A\, = 1, in addition to their respective range

constraints such a&; € [a;,b;]. Another constraint that arises in the CLM input is a pair of
parameters that need to have specific otlex. \; due to certain physics restrictions, again, in
addition to the range constraims € [a;, b;].

For example, Figure 4.1 illustrates a uniform sample set polggons that are obtained due to
constraints\ss + A\34 + A35 = 1 and g < \ao, respectively.

4.3 Rosenblatt Transformation

In this section, we introduce a transformation that mapstimarameter vectok with dependent

or constrained components to a vector of i.i.d. uniformafalesn. This transformation is called
Rosenblatt transformation [18] and is essentially a gdizatéon of the CDF transformation (1.4)
to multiple dimensions.

To clarify the upcoming notation, let us remove one inputpaeter from the tripl€;, \;, ;) for
each constraint of a formy; + A\; + A, = 1, since one of the parameters in the triple is completely
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Table 4.1.CLM input parameters: part one

[ Notation | Name | Default [ Min [ Max [ Units | Description |
A1 displar 0.67 0.1 1 m displacement length: canopy top
A2 dleaf 0.04 0.01 0.1 m characteristic leaf dimension
A3 mp 6 3 16 none slope of conductance to photosynthesis
A4 ge25 0.06 0.04 0.08 umol C/umol phot Quantum efficiency
A5 rholvis 0.07 0.01 1 none leaf reflectance (vis)

A6 rholnir 0.35 0.01 1 none leaf reflectance (nir)

A7 rhosvis 0.16 0.01 1 none stem relectance (vis)

A rhosnir 0.39 0.01 1 none stem reflectance(nir)

Ag taulvis 0.05 0.01 1 none leaf transmittance (vis)

A1o taulnir 0.1 0.01 1 none leaf transmittance (nir)

A11 tausvis 0.001 0.0001 0.01 none stem transmittance (vis)

A12 tausnir 0.001 0.0001 0.01 none stem transmittance (nir)

A13 x| 0.01 0.01 1 none leaf/stem orientation index
A4 rootapar 7 1 20 m-1 rooting distribution parameter
A15 rooth_par 2 0.5 10 m-1 rooting distribution parameter
A6 slatop 0.01 0.08 0.12 m2/gC SLA at top of canopy

A7 dsladlai 0.0012 0.001 0.007 m2/gC/LAI | SLA/dLAI

18 leafcn 35 23 70 gC/gN leaf C to N ratio

A9 flnr 0.05 0.04 0.1 none frac of leaf N in Rubisco

A20 smpso —66000 —120000 | —20000 mm soil water pot. at full opening
A21 smpsc —255000 | —300000 | —120000 | mm soil water pot. at closure

A22 Iflitcn 70 39 143 gC/gN leaf litter C:N

A23 frootcn 42 25 85 gC/gN fine root C:N

A24 livewdcn 50 25 75 gC/gN live wood C:N

A25 deadwdcn | 500 200 1400 gC/gN dead wood C:N

26 froot_leaf 1 0.3 5 gCl/gC new fine root alloc C /leaf C
Aa7 stemleaf 1.5 0.6 5.3 gCl/gC new stem alloc C per leaf C
Aog crootstem | 0.3 0.1 0.7 gCl/gC new croot alloc C per stem C
A29 flivewd 0.1 0.06 0.28 none fraction of new wood that is live
A30 If flab 0.25 0.14 0.54 none leaf litter labile fraction

A31 If _fcel 0.5 0.37 0.49 none leaf litter cellulose fraction
A32 If flig 0.25 0.1 0.38 none leaf litter lignin fraction

A33 fr_flab 0.25 0.18 0.25 none fine root labile fraction

A34 fr_fcel 0.5 0.38 0.5 none fine root cellulose fraction
A35 fr flig 0.25 0.16 0.36 none fine root lignin fraction

A36 leaf_long 1.5 2 10 yr leaf longevity

A7 resist 0.12 0 0.5 none fire resistance index

A3s grperc 0.3 0.2 0.4 none growth respiration factor 1
A39 grpnow 1 0 1 none growth respiration factor 2
A0 bdnr 0.25 0 0.8 (2/s) bulk denitrification rate

determined by the other two. With the appropriate shiftiighe indices, we will be left with
d = d — n; input parameters, where is the number of input parameter triples that sum up to one.

Given a vector of random variables = (), ..., \;) with known joint cumulative distribution
function (CDF)F'()\, ..., A\q), One can obtain a set gf's that are independent uniform random
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Table 4.2.CLM input parameters: part two

[ Notation | Name | Default [ Min [ Max [ Units [ Description |
A41 dayscrecover | 300 1 90 days days to recover negative cpool
A42 rc_npool 100 0.5 50 none resistance for uptake from plant npool
M43 br_mr 2.53e — 06 | 4e — 07 | le — 05 | gC/gN/s | base rate for maintenance respiration
Aaa ql0.mr 1.5 1 4.5 none g10 for maintenance respiration
Aas cnsl 12 8 20 gC/gN carbon:nitrogen for SOM 1
A6 cn.s2 12 8 20 gC/gN carbon:nitrogen for SOM 2
Aa7 cns3 10 6 20 gC/gN carbon:nitrogen for SOM 3
A48 cns4 10 6 20 gC/gN carbon:nitrogen for SOM 4
49 rf_11s1 0.39 0.35 0.45 none resp. fraction for litter 1— SOM 1
A50 rf_12s2 0.55 0.385 0.715 none resp. fraction for litter 2- SOM 2
As1 rf_13s3 0.29 0 0.9 none resp. fraction for litter 3— SOM 3
A52 rf_s1s2 0.28 0.26 0.3 none resp. fraction for SOM - SOM 2
A53 rf_s2s3 0.46 0.032 0.6 none resp. fraction for SOM 2- SOM 3
As4 rf_s3s4 0.55 0 1 none resp. fraction for SOM 3— SOM 4
A55 k11 1.2 0.9 1.5 1/day decomp rate for litter 1
As6 k.12 0.0726 0.05 0.1 1/day decomp rate for litter 2
As7 kI3 0.0141 0.005 0.028 1/day decomp rate for litter 3
A58 ksl 0.0726 0.038 0.11 1/day decomp rate for SOM 1
A59 k_s2 0.0141 0.005 0.022 1/day decomp rate for SOM 2
60 k_s3 0.0014 0.0004 0.005 1/day decomp rate for SOM 3
61 k_s4 0.0001 0 0.0004 1/day decomp rate for SOM 4
A62 k_frag 0.001 0.0002 0.005 1/day fragmentation rate for CWD
63 cwd_fcel 0.769 0.66 0.81 none fraction of cellulose in CWD
A6a dnp 0.01 0.001 0.1 none denitrification proportion
65 minpsLhr —10 —15 -5 MPa minimum psi for heterotrophic resp
66 ql0hr 1.5 1 4.5 none g10 for heterotrophic respiration
67 r_mort 0.02 0.002 0.2 1/year mortality rate
68 sf_minn 0.1 0.02 0.4 none solulble fraction of mineral N
69 crit_dayl 39300 35000 45000 seconds | critical daylength for senescence onset
A70 ndayson 30 5 60 days no. of days to complete leaf onset
A71 ndaysoff 15 5 40 days no. of days to complete leaf offset
A72 fstor2tran 0.5 0.1 1 none fraction of strage to move to transfer
A73 critonsetfdd | 15 5 30 days no. of freezing days to set GDD counter
A74 crit_onsetswi 15 5 30 days no. of water stress-free days for leaf onget
A75 soilpsion —2 -5 —0.75 MPa critical soil water potential for leaf onset
A76 crit_offsetfdd | 15 5 30 days no. of freezing days for leaf offset
77 crit_offsetswi | 15 5 30 days no. of water stress days for leaf offset
A78 soilpsioff -2 -5 —0.75 MPa critical soil water potential for leaf offset
A79 lwtop_ann 0.7 0.5 1 1/year live wood turnover proportion
A80 gddfuncpl 4.8 3 7 none gdd threshold parameter 1
A81 gddfuncp2 0.13 0.05 0.3 none gdd threshold parameter 2
variables orj—1, 1] forall i = 1,2, ..., d, using thescaledconditional cumulative distributions
m = Ri(A\)
N2 = R2|1()\2|)\1)
Ny = Rs|2,1(>\3|>\2> >\1) (4-2)

i = Raa-1,..1(AalXa=1,-.., A\).

Each mapR.(-) is a scaled version of the corresponding CBK-) to ensure); € [—1, 1]. Thatis,
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Figure 4.1. Input parameter samples for some of the constrained
inputs.

Ry(M\) = 2F1(\) — 1 and, similarly, for the rest of the conditional CDFs in (4.2).

This map, denoted by the shorthand notatipa- R(\), is called theRosenblatt transformation
(RT) [18]. Note that the RT is not unique: by ordering thés in different ways, one can obtait
different sets of uniform random variables.

The RT will be employed to map the input parameter samples fiee A-space to thep-space,
or [-1,1]¢. Note that the inverse RT can be used, say, when one needsdio G4 M inputs
corresponding to quadrature points[inl, 1]¢, or when one needs to obtain uniformly distributed
samples in the constrainekkspace.

4.4 Polynomial Basis Reduction via Bayesian Compressive Sen
ing

In order to have proper coverage of the input parameter gpateespects the constraints and uses
all available information, the training set of input pardaars is taken to be uniformly distributed
on the constrained space. This is consistent with the maxirantropy principle, see [12], for
instance. With Rosenblatt transformation in place, whi@psithe input parametehsto a uniform
random vectom, one can build Polynomial Chaos expansion with respeet, tas described in
Section 1.1.1. In other words, the forward function is eaédd at the training input data set to
arrive at input-output pairé\;, f(\;)) fori = 1,2,..., N. With the RT in mind, we are seeking
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an expansion of the form
K
fe(m) = aWy(n) (4.3)
k=0

to serve as a surrogate. In terms of the CLM input parametegssurrogate will take the form

feA) =Y ali(R(N)). (4.4)

Table 4.3.CLM output quantities of interest

| Notation | Name | Units | Description |
Y1 TOTVEGC gC/n? Total vegetation carbon
Yo TOTSOMC gC/n? | Total soil carbon
Y3 GPP gC/m?/s | Gross primary productior]
Y4 ERR W/m? Energy conservation erroff
Us TLAI none Total leaf area index
Y6 EFLX_LH_TOT | W/m? Total latent heat flux
Y7 FSH Wim? Sensible heat flux

We applied the iterative BCS algorithm of polynomial basduetion, described in Section 1.1.3,
to the CLM with 7 output quantities of interest (Qol), shown in Table 4.3. &ach Qol, a0-year
average of d000-year CLM simulation is taken.

Let us study the total vegetation carbon (output TOTVEGC)erabosely. We rely onV = 987
training simulations sampled uniformly in the constrairpedameter space. We run the iterative
BCS algorithm starting with the second ord&r£€ 2 and, therefore3240 basis terms initially) up
to the fifth order. The first step reveals all the second orelens that are important if one had to
represent the forward function with only second order polyiml expansion. Figure 4.2(a) shows
a matrix of important dimensions and couplings for the risglreduced second order basis. The
diagonal terms correspond to the sum of the logarithms oatisolute values of the PC modes
corresponding to basis termig(n;) = n; andiy,(n;) = (3n? — 1)/2, while the off-diagonal terms
are the logarithms of the absolute values of the PC modeséotermsy),»;. For clarity of pre-
sentation, these joint PC modes are split to entries in tragriri in Figure 4.2(a). Furthermore,
the iterative BCS algorithm is carried out up to théh order, leading to a PC representation with
only 226 terms. As a comparison, a second ordérdimensional PC basis without reduction has
over3000 terms. Figure 4.2(b) shows the output values, sorted foeral@ar visualization, as well
as the PC representation values evaluated at the samengraioints. Note that, while the over-
all trend is captured, the strongly nonlinear behavior @ tlutput renders the PC representation
imprecise in the regions with low or no vegetation, i.e. vehtre output; ~ 0. As can be seen
in Figure 4.2(b), about half of the samples lead to zero \&get, i.e.y; = 0. In principle, one
should identify the regions in the input parameter spacedhigiespond to low vegetation and split
the input domain accordingly, leading to a mixture PC repnégtion [19]. The study of such clas-
sification approaches in high-dimensional input spacesiiside the scope of the current report
and will be carried out in future.
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Figure 4.2. Important parameter couplings and reduced basis

representation for the output TOTVEGC.

Figure 4.4 reports the matrices of relevant input varialdeptings for the other six Qols, while
Table 4.4 shows the firdt) important dimensions for each output by running a singlet trder

BCS.
Table 4.4.Ten most important parameters for each output.
| rank [| TOTVEGC | TOTSOMC | GPP ERR TLAI | EFLX_LH_TOT | FSH |
1 r_mort glomr leafcn k_s4 froot_leaf | leafcn rholnir
2 glomr leafcn k_s4 froot leaf | g10.mr gqlomr glomr
3 froot_leaf froot_leaf froot_leaf | g10hr glQhr froot_leaf leafcn
4 br_mr br_mr flnr fflnr leaflong | k.s4 br_mr
5 gl0.mr ffinr gq10.mr q10.mr k_s4 br_mr flnr
6 leafcn dnp g10hr dnp br_mr flnr k_s4
7 k_s4 glQhr dnp rf_s3s4 dnp leaf long taulnir
8 stemleaf leaf long rf_s3s4 leaflong | stemleaf | q1Qhr froot_leaf
9 flnr k_s4 leaflong | mp r_-mort rf_s3s4 frootcn
10 dnp frootcn br.mr bdnr rf_s3s4 stemleaf f_frag

4.5 Exploration of the parameter space

Several simulation ensembles were run to asses the belafvimect model observables for a
range of values for relevant model parameters identified/ithe BCS analysis described in Sec-
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tion 1.1.2. These model parameters are shown in Table 4 &initnel conditions were generated
through three model spinup steps as outlined below:

e Accelerated decomposition (AD) spinup - a 600 year simoiatvith soil C and N pool
turnover times reduced by a factor of 20 to accelerate dayation.

e Exit spinup - a one year simulation with normal C and N turndiraes.

e Final spinup - a 1000 year simulation to re-equilibrate thedei with the correct C and N
turnover time.

Time series for the total vegetation carbon (TOTVEGC), tetal carbon (totsomc) and total leaf
area index (TLAI), corresponding to AD and final spinup runs shown in Fig. 4.4. The inset
plots zoom in on the last 30 years of the final spinup run. Dedpe fact that the model did not
reach a quasi-steady state at the end of the final spinup etteddl changes are small enough to
enable sensitivity studies using these results are imtiatlitions.

Starting with the model state at the end of the final spinup amensemble of 49 runs was per-
formed to study the effect ofys (“froot_leaf”) and \g; (“r_mort”) parameters on the output ob-
servables of interest. The values for the othe&parameters out of th&l considered for this study
were set at the nominal values listed in Tables 4.1 and 4.2 values for\os and g7 were chosen
to span the physical ranges for these parameters, alsd irst@ables 4.1-4.2.

Figure 4.5 shows average values for select CLM output obbkssaThe averages are taken over
the last 10 years of 1000 year simulations for various p@iss, A¢7). These results show a shart
drop in vegetation for certain combinations bf; and \g;) values. Time series for TOTVEGC
and TOTSOMC are shown in Fig. 4.6. These time series cornesfmthe runs shown with filled
circles in the same figure.

4.6 Porting CLM to Sandia

The CLM software framework was installed at SNL to enable pafeconcept studies for model

calibration and uncertainty quantification. Several pyeisite software libraries were required
prior to building CLM. The HDF5 (version 1.8.5), netcdf (viens 3.6.2), NCL (version 6) as well

as Python’s Numeric, Scientific.lO, Numpy, and Scipy moduiere installed.

CLM was built using PGI compilers (version 9.0). Most of thghhievel build tasks are handled
by Python scripts included in the distribution. These dsripcorporate case-specific keywords
and generate directory trees with setup data, and exeeuilds required for each simulation.
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