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Problem Statement

• Aim: To develop statistical techniques to characterize 
ongoing epidemics from partial biosurveillance data
– Estimate # of index cases, time of infection, or infection rate
– Do so with minimal data i.e., early in the outbreak

• Data is a time-series of counts of ICD-9 codes

– Quantify the confidence in the estimates
• Motivation

– To provide initial conditions  for disease models, to be used for 
planning medical interventions, resource allocation etc.

• Disease models can be agent-based ones too

– Can also be applied to historical epidemics, with case-counts 
as the data

• Useful for obtaining disease model parameters for agent-based 
simulators.



Why Are Current Biosurveillance Methods 
Inapplicable?
• Current biosurveillance methods focus on detection

– Based on anomaly detection
– No model of the background

• Or filtered out and this “disturbs” the detection

• Current characterization methods for epidemics are used 
retrospectively
– The epidemics are fully observed, not partially observed
– The identity of the disease is known
– The data consists of counts of people who have been 

diagnosed with the disease
• It is not biosurveillance data with all its confounding issues

“ 7 day moving average filters suppress exactly the short scale features that were the 
intended object of study”

- Bloom, Buckeridge, and Cheng, JAMIA (2006)



Difficulties with Using Biosurveillance Data

• Biosurveillance data (ICD-9 counts, 
OTC sales etc) is complex
– Weekly  & seasonal cycles; non-

stationary structure
– Symptom, not diagnosis, data (for 

timeliness)
• Characterization of epidemics with 

biosurveillance data requires:
– Ability to model the 

background/endemic morbidity in 
real time

– Detect the start of the epidemic
– Extract the epidemic from the data

• By “subtracting” the background
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Technical Challenges

• The components of the procedure are:
– Detection of an outbreak from time-series data
– Extraction of the outbreak from the background

• Data for detection and extraction are ICD-9 streams with both the 
background/endemic and outbreak signal

– Characterization of the outbreak (index cases, infection rate …)
• Biosurveillance data is partial, so …

– All estimates are uncertain, and
– The uncertainties need to be quantified

• Figures of merit
– Delay between infection and detection
– Cleanliness of  the separation of background and epidemic
– Closeness of inferred and true nature of outbreak



Detection of the Outbreak

• Based on sequential data assimilation using a Kalman Filter (KF)
– Uses a simple model for daily ICD-9 counts (case-count)
– Case-count model contains

• A daily mean level and a cyclic weekly term
• A  quadratic, fitted to 4-week window of daily levels, for one-step-ahead 

predictions

– KF also produce a measure of uncertainty in model predictions
• KF covariance matrix

• Results in a model for the background morbidity
• Detection strategy:

– Predict one-day ahead using quadratic model
– If observation is greater than threshold, alarm (2-3 Std. Dev.)
– Else, assimilate observation to obtain new mean level



Example with Synthetic Data

• Simulated anthrax outbreak
– Small atmospheric release over a spatially 

distributed population (3 Million people)
– 1125 index cases, with a range of doses
– Includes visit delay

• Background data for Miami (ICD-9 for ILI)
– Anthrax outbreak injected in on Day 130

• KF starts fitting background model from Day 0
• Question: How good is the background model

– i.e. how many days to detection?
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Detection Performance

• Based on Kalman Filters 
– Starts on Day 0

– Creates a model of endemic ILI 
disease

• Detection:
– One-day-ahead model 

predictions

– Compared with observations

– Significant deviation indicates 
an anomaly – detection! 

– In this case, detection took 5 
days

– Incubation: 3-4 days
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Extraction of the Epidemic 

• The “background” model 
can be “frozen” on the day 
of alarm

– A quadratic is fitted to mean 
levels to determine local slope 
for forward projection

– Weekly cycles derived previous 
data

– KF formalism used for forward 
projection

• Questions:
– How close are the model 

predictions to observations?

• Test this without the 
injected outbreak.

• Caveat: Model predictions 
will degrade in time

• Predictions up to 2 weeks ahead look good
• But can this be used to extract the epidemic?



Extraction of the Epidemic Cont.

• Plot the difference 
between observations 
and predictions by frozen 
background model

• Estimate of the anthrax 
outbreak

– Pretty good for 15 days
• However, it is a partial 

estimate
– Extends only to the number 

of days of observations

• Can the partial anthrax 
outbreak be used for 
characterizing  the 
attack? Day 0 is day of release

Day 5 is day of detection



Characterization of the Anthrax Epidemic

• Characterization: 
– Estimation of the number of index cases, time of release, an average 

dose, and some parameters of the visit-delay model
• Hypothesis: 

– An anthrax incubation period model + a visit delay model can 
reproduce the epidemic curve

• The quantities of interest are all parameters/inputs into this epidemic model
– So given a partial epidemic curve, fitting an anthrax model should 

reveal the necessary model parameters
• Questions:

– How much data is needed to estimate these parameters?
• i.e., is less than 15 days of (good, normal background extracted) data 

sufficient?
– What is the level of uncertainty in parameter estimates, as a function 

of (quantity of) data?



Bayesian Techniques to Solve the Problem

• The estimation is posed as a Bayesian inverse problem
– Predicated on the extracted outbreak data

• Allows one to use bounds / prior beliefs regarding the value of 
the parameters
– We assumed that index cases ranged between 100-10,000

• Solved using an adaptive Markov chain Monte Carlo sampler
– All parameters estimated as probability density functions (PDF)
– Used autocorrelation analysis to determine “convergence” of the 

Markov chain



Estimates of the Number of Index Cases

• Estimates of the number of index cases (in red). 
• True figure in blue

Number of index cases 
bounded in 7 days; 

Bounded to 2250 people 
out of original population 
of 3 Million;

Accurate to  20% after 9 
days, post detection.

Incubation period is 3-4 
days so will not get earlier 
than that.



Application to a Communicable Disease

• The technique can be applied to a communicable disease
– Need to estimate infection rate (along with “usual” parameters)

• Assumptions for communicable diseases model
– The infection rate rises & then falls smoothly in time

– Index cases are a small fraction of the total number of victims

• A lightweight model can be created and fitted to data
– The model of epidemic evolution is statistical (not AB)

– Is used with MCMC, as before

– Allows inferences to be drawn as PDFs

• Demonstrate with synthetic data
– Simulate a plague epidemic using an AB model



A Communicable Disease Example

• The simulated plague epidemic
– Includes visit-delay
– Incubation is NOT dose 

dependent
• 100 index cases

– Epidemic dies out in 40 days
– 1500 victims, total

• Aim: 
– Estimate the total size of the 

epidemic
– Also, the infection rate curve
– Compare with the “true” figures 

from the simulation

• Red points: People turning symptomatic, 
daily (observed)

• Blue line: people being infected, daily 
(unobservable)



Estimation of the Final Epidemic Size

• The estimate improves (shorter error bars) with time
• Easier for large outbreaks

Final size of the epidemic (true figure = 1500) Infection rate



Conclusions

• Techniques appear promising to construct and integrate 
automated detect-and-characterize technique for epidemics
– Working off biosurveillance data
– Provides information on the particular/ongoing outbreak

• Potential use – in crisis management and planning, 
resource allocation
– Parameter estimation capability ideal for providing the input 

parameters into an agent-based model
• Index Cases, Time of Infection, infection rate

• Non-communicable diseases are easier than communicable 
ones
– Small anthrax can be characterized well with 7-10 days of data, 

post-detection; plague takes longer
– Large attacks are very easy
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