MPI/FT: A model-based approach for low-
overhead fault-tolerance

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Anthony Skjellum™, Rajanikanth Batchu?,
Yoginder Dandass®, Murali Beddhu”

"MPI Software Technology

$Mississippi State University

June, 2002

Qutline

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Introduction

Background

Model-based approach
Usage and implementation
Results

—uture work

Conclusions

Qutline

e |Introduction
— Clusters
— MPI
— Motivation

e Background

* Model-based approach

» Usage and implementation
e Results

e Futurework

e Conclusions

|||||||||||||||||||||||||

sssssssssssssssssssssssssss

| ntroduction

e Clusters
— Compute nodes + High speed SANs
— Widespread usage
— Availability and reliability
— Efficacy for parallel computing

« MPI (MPI Forum 1995)

— Standard for message passing interface
— Provides services and abstractions
— Many implementations

 Commercial

« Academic

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

M otivation

e Popularity of clusters + MPI
— Wide deployment
— Usage of clustersin harsh environments (external
faults)

e High costs of failure
o Control systems

 Financial/e-commerce
« Web
 Insufficient reliability
— Shortcomings in the MPI standard
— Inadequate features in other MPI implementations.

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Motivation, I 1.

Harshness

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

DEPARTMENT OF COMPUTER SCIENCE

=R

Space
environments

Ground
environments

Financial
analysis

Increasing probability
of failure

Scientific simulations

Run-time of Parallel application

4

M otivation, | 11.

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

“Thereis aneed for better way than ssmple
restart of MPI applications upon failure.”

Qutline

e |ntroduction

e Background
— MPI standard
— Lessons learned from other research efforts

* Model-based approach
e Usage and implementation

|||||||||||||||||||||||||

ccccccccccccccccccccccccccc

MPI Shortcomings

« MPI (MPI Forum 1995) standard’s limitations

— Main goals. performance, portability
— Static process model
— No comprehensive measures for reliability

o Detection
— Limited detection
— Signhaled through error codes

e Recovery and Error Handling
— geared towards graceful termination,
— cannot always be invoked (fatal errors)
— coarse grained (per communicator)
maemme: — |Nadequate

EEEEEEEEEEEEEEEEEEEEEEEEEEE

L essons L ear ned

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Management of redundancy is essential
“Onesizefitsal” 1snot true
Applications have differing requirements
Transparency results in overhead

Design/decision process of middleware is
complex

— Contrasting Inputs

— Contrasting requirements

10

Qutline

 |ntroduction
e Background
* Model-based approach

— Research approach
— Other features
— Models| and |1

» Usage and implementation
e Results

e Futurework

e Conclusions

uuuuuuuuuuuuuuuuuuuuuuuuu
(:'; PERFORMANCE
ICOMPUTING LAB

il

11

M odel-based Resear ch Approach

e Our main goal islow-overhead fault-
tolerance

 All other effortstreat applications as
“blackbox” and provide same services
— User transparent checkpointing
— Process level checkpoints

» Each application has features that help In
achieving fault-detection and recovery

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<= 12

M odel-based Resear ch Approach, I1.

 |dentify featuresthat help in effective
realization of fault-tolerance
— Communication topology (master/dave)

— Program structure (communication,
computation |oops)

— Redundancy requirements
— Support from underlying layers

||||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 13

M odel-based Resear ch Approach, I11.

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

— Classify models based on combination of
features and requirements
« Application models, models of execution
* Predetermined models, most commonly used
« Based on application features and requirement
« Adaptable
* Provide abstraction from complex decisions (next
dide)
— Take all the principles, and incorporate
selectively into existing middleware:
e MPI/FT™ isderived from MPI/Pro™.

14

Complexity of Decision Process

*Types of faults o
e Communication

eQOccurrence rate patterns:
«Manifestations Fault model Application (master/slave) and
ault mo Features simple SPMD
*Resource
requirements
*ABFT
Decision
Process
*Resources,

*Predictability, recovery

memory available .
time

*Fault-tolerance in

hardware (lead *Performance, fault free
hardened) overhead
«Characteristics Application ™ °FT features,
Hardware Goals availability, and
reliability requirements
% PERFORMANCE
T COMPUTING LAB

EEEEEEEEEE OF COMPUTER SCIENCE

<3 15

Other Featuresof MPI/FT

e |nterna robustness

— Features and techniques to mask faultsin
middleware space

— Coordinator and Self Checking Thread (SCT)
provide detection and internal robustness
— SCT
o Various levels of portability
« Adaptableto various fault rates and fault types

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 16

Other Features, I1.

e Parallel NMR

— MPI process level redundancy

— Part of our current study/research
e Checkpointing

— User Aware and user initiated

— Functions to select data and recovery functions
 ABFT support

— application initiated kill and recovery

||||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

‘%‘ 17

Modd |.

» Features
— Simple master/slave work model
— Virtual star topology
— Master process does not get faults

 FT services
— Detection of dave deaths
— Death of asingle slave doesn’t disable application
— API for notification and recovery
e Examples
— Pmanddl, povray, many othersin this category

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 18

Topology for Modsdl I.

M aster

Coordinator

Safe Process Area

—» Flow of messages

SCT 1 SCT n-1

Worker 1 Worker n-1

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

ccccccccccccccccccccccccccc

<3 19

Modd I1.

e Features
— Complex SPMD
— Virtual all-to-all topology

— Programs written in iterative loops (communication +
computation)

e FT services

— Detection of slave deaths

— User aware, middleware assisted checkpoint
e Examples

— Game of life

— Discrete smulation

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 20

Topology for Moddl I1.

rank O

Coordinator

Safe Process Area

—» Flow of messages

SCT 1 SCT n-1
< >
rank 1 rank n-1
\ 4
rank 2
% PERFORMANCE
= COMPUTING LAB

ccccccccccccccccccccccccccc

<= 21

Qutline

 Introduction
e Background
e Model-based approach

e Usage and implementation
— User steps
o Typical steps,
» Code changes
— Implementation
o StepsinFT
* Recovery in Model-1, Model-11

e Results
e Future work
e Conclusions

|||||||||||||||||||||||||

= COMPUTING LAB
DEPARTMENT OF COMPUTER SCIENCE

'%‘ 22

Typical Usage for MPI Application

e Understand the problem and identify the parallelism in the
program.

e Decide on aprogram process model (master/slave, SPMD,
hybrid, etc.) with deterministic communication patterns.
e Implement (code) on middieware.

e Launch the application with required number of processes.
In the absence of external faults the application will
successfully complete. A typical program launch could be

S>mpirun —-np 4 -mach file myMachfile
myParallelapp paraml param?Z

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 23

Usagefor MPI/FT

« Undestand the problem and identify the paralelism in the
program.

* Decide on a program process model (master/dave, SPMD, hybrid,
etc.) with deterministic communication patterns.

* ldentify impacts of faults and region in code for notification and
recovery.

» Decide on application execution model.

 Implement (code) on a middleware and introduce FT specific
code.

« Launch the application with required number of processes.
Additionally static spare processes should be launched. A typical
program launch with fault-tolerance could be

$> mpiftrun -np 4 -sp 2 -mach file myMachfile
____ -ftparaml vall -ftparam2 wval2
Stowmee MYFTParallelapp paraml param?2

EEEEEEEEEEEEEEEEEEEEEEEEEEE

3= 21

Code Changes

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

User applications need to be modified in order to
utilize FT features

Simple and effective API for each model

Code changes
— Do not alter existing structure

— Constant number of new FT API required irrespective
of original code length

Model | : GetDeadRanks, RecoverRank

Modd |l: Model-1 APl + RecoveryPoint,
ChkptDo, ChkptRecover

25

Model |. API description

INT
MPIFT GetDeadRanks (
OUT INT *deadcount,
OUT INT *deadarrayranks,

IN INT array size)

e Provides dead rank information to user
thread

e Can beinvoked only in the master (rank 0)
Process.

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 26

Model |. API description, 1.

INT
MPIFT RecoverRank (
IN INT RankToRecover

) ;

 |nitiates recovery of aparticular dead rank

e Can beinvoked only in the master (rank 0)
Process.

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<= 27

Model | code changes

Create job array; Create job array;
Send Init(); Send jobs(); Send Init();Send jobs();

Save jobs() ;

While (! Jobs done) { While (! Jobs done) {
Recv results(); MPIFT GetDeadRanks (&deadcount, &deadarray,
Send jobs (); arraysize) ;

| if (deadcount >1) {

for (I = 0.. Deadcount-1) {
Recover job();
MPIFT RecoverRank (deadarray[I]);
Send Init(); Send jobs(); Save jobs();
Jelse/{
Recv Results();

Delete jobs();

Send jobs () ;

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB }

ccccccccccccccccccccccccccc

StepsinFT, .

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

sssssssssssssssssssssssssss

Application
Begin End

Fault
detection

Fault
notification

Recovery
Initiated

29

Stepsin FT, 1.

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Detection
— FT Threads. Coordinator and SCT

— External heartbeats
» Between ranks

— Internal heartbeats
» Between SCT and MPI/FT send and receive progress threads

— User configurable frequency and timeouts
 Support for passing them through command line (mpiftrun)

30

Stepsin FT, 111,

 Fault notification to Application
— Modéd | polling based
— Modeél Il polling based / evaluating interrupt based

* Recovery

— Modd I:
e Only in context of master (rank 0O)

— Moddl I1:

« All aliveranks must be involved in recovery
» Checkpointing-based application recovery

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 31

Fault Detection using External Heartbeats

e External Heartbeats

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

— Between coordinator thread (master node) and
SCTs (worker nodes)

— Uses additional TCP connections between the
master and workers to send special
reply/request packets

— User configurable frequencies and timeout
factors

32

Fault Detection using External Heartbeats,
1.

rank O

; Coordinator

g
PNE
& |
SCTQ sCrg | === | o1
........ FT heartbeat path
rank 1 rank 2 rank n-1
g Process Thread

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

‘%‘ 33

Fault Detection using Internal Heartbeats

 Between SCT and progress threads (send
and recv)
— Shared memory area for heartbeat counters, and
flags
e Progressthreadsinform SCT about
“expected busy time” when sending long
messages
— SCT will alow the expected time to expire
before initiating heartbeat requests

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Fault Detection using Internal Heartbeats,
1.

Wy
Progress Progress User

Thread 1 Thread 2 Thread

........ FT heartbeat path
rank X

2 Process Thread

|||||||||||||||||||||||||

ccccccccccccccccccccccccccc

<= 35

SCT and Recv Thread

e SCT raises a heartbeat

request flag and ng
' ' Post
associates a timeout value - W
o SCT then sends a message — Inform/wakeup
through the TCP A thread
connection to recv thread 'swarser e 5
* Recv thread exits %ﬂteﬂ ooy
select loop, iIncrements Progress

heartbeat counter

o SCT reads updated
counter after a specified
delay (heartbeat interval)

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

‘%‘ 36

SCT and Send Thread

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

SCT raises a heartbeat
request flag and associates a
timeout value

SCT increments the “send”
semaphore to wake the Send
thread

Send thread increments
heartbeat counter

SCT reads updated counter
after a specified delay
(heartbeat interval)

37

SCT

Post Update
ey ﬁapmfe

0 [Send thread

_semaphore

~"return

Shared area \ﬁ%té\

g ~ from
counter/ wait

Recovery

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Middleware level recovery
— bring process back into application group

Application level recovery
— Bring new rank to required state

Model |: Recovery in context of master
process alone

Model Il: Recovery in context of all alive
ranks

38

Model |. Recovery

Timeline

Master/Rank 0
User Thread Coordinator Thread Spare rank
Fault detected
*Update notification
eInvalidate connection
GetDeadRanks()
User Notification
_____ RecoverRank __ __ | ____________________ | _____________________Startrecovery
\toordi nator Recovery
Release Spare \Wmme
>
Norma init
Setup Data
k//7 & FT paths
Accept data Accept FT /
connection connection
Setup middleware
connections &
datastructures End
End Recover Rank End Coordinator Recovery End MPI_Init Middleware

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

EEEEEEEEEE OF COMPUTER SCIENCE

=R

39

Model |. Recovery, I1.

Master/Rank 0 Spare rank
User Coordinator
Thread Thread End
Middleware
"'é'"""""""""““““"““""'""""""""""'""""""""""I'evel recovery
T
£ Application specific ~W _
= initialization » Startup config
Startup data End
___ Application
M level recovery

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

sssssssssssssssssssssssssss

'%‘ 40

Model |1. Recovery

Other Alive Ranks Master/Rank 0 Spare rank
User Thread SCT User Thread Coordinator Thread
Fault detected -
Notification Invalidate connection
Deadrank, X Notify alive ranks
<+
GetDeadRanks GetDeadRanks
Recover Rank(x) Recover Rank(x)
\\ __________________________________ Start recovery
) SCT Recovery Coordinator Recovery
% Clean Q's, re-init Clean Q's, re-init
£ —Relepse message
. T
Norma init
/ ~~ Setup Data
—/7 // & FT paths
Accept/Chnect | Accept FT* | Accept data/ Accept FT End
data connection connection connection connection)
Middleware
End Recover Rank End SCT End RecoverRank| End Coordinator End MPI_Init level recovery
_________________ L ___Recovery______| ________________| ____Recavery

& PERFORMANCE
= COMPUTING LAB

EEEEEEEEEE OF COMPUTER SCIENCE

=R

41

Model |l. Recovery, I1I.

Master/Rank O
User Coordinator
Thread Thread

CheckpointRecover

*Decide on chkptnume

*Retrieve data

eUnmarshal and
restore state

Other Alive Ranks
User SCT
Thread
o CheckpointRecover
=
= .
= *Decide on chkptnum < >
*Retrieve data
eUnmarshal and
restore state
v [
% PERFORMANCE
= COMPUTING LAB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

42

Spare rank

End
Middleware
_______________ [evel recovery
CheckpointRecover
*Decide on chkptnum
*Retrieve data
etoroame End
_________________ Application
level recovery

Model |. Recovery Recommendations

* Recovery of adead slave isoptional, as
applications can continue without recovering (in
most |oad balanced applications)

» Deciding factors
— Time for recovery (is recovery justified?)

— Application progress (no need for slaves at the end of
the application)

— Loss of performance is acceptable (fewer slaves)

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Model |1. Recovery Recommendations

 Dead ranks must be recovered

 Other option (not currently supported):
— shrink communicators and reorganize ranks

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Qutline

 |ntroduction

e Background

» Model-based approach

e Usage and implementation

e Results
— Parameters
— Message-passing overheads
— Modd |
— Modd I

e Futurework
SSSSSSSSSSSSSSSSS e Conclusion

(:'; PERFORMANCE
= COMPUTING LAB

ccccccccccccccccccccccccccc

Parameters

e Fault-free Overhead

— Overhead incurred in the absence of faults
— Increase in latency

— Decrease in bandwidth

— Increase in run-time

— Mainly because of detection, and checkpointing and
calsto FT API

 Fault-injected Overhead

— Overhead incurred in the presence of faults
— Recovery time

Note: All increases and decreases obtained in comparison
% PERFORMANCE with standard 1.5 version of MPI/Pro™

EEEEEEEEEEEEEEEEEEEEEEEEEEE

"%‘ 46

M essage Passing Over heads (L atency)

Fault-free overhead (latency)
20
18 -
Percentage increase o
in latency s 1
] § 121 —e—Ext=0.5sec
*Measured using a S 10 _.m . Ext=10sec
plng_pong test ? g - Ext=2.0sec
% 61
«Setup: Pl - \
750mhz/Linux 2.4, ,
Fast Ethernet ; -~
“Ext” is frequency of 1 10 100 1000 10000 100000 1000000 1E+07
h tb t q y Message Size (bytes)
earitbeats
Note: Logarithmic X axis
T COMPUTING LAB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

"%‘ 47

M essage Passing Over heads (Bandwidth)

*Percentage decrease
In bandwidth

Measured using a
modified ping-pong test

«Setup: Pl
750mhz/Linux 2.4, Fast
Ethernet

“Ext” is frequency of
heartbeats

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Bandwidth Overhead %

25.00

20.00

15.00

10.00

5.00

0.00 -

-5.00

Fault-free Overhead (Bandwith)

/\

J‘“‘J_Jg_n ASARAR Q]

1000 10000 100000 1000000 1E

+O7

Message Size (bytes)

—&— Ext=0.5sec
—@— Ext=1.0sec
Ext=2.0sec

48

Note: Logarithmic X axis

Modedl |. results

*Example program:
pmandel fractal program

* Run-time increase (~ 12
%)

» Middleware Recovery
time ~32 milliseconds

*Application level
recovery time ~ 250
milliseconds

Pentium 500 Mhz,
128mb RAM, Linux 2.2

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

DEPARTMENT OF COMPUTER SCIENCE

=R

Progress (pixels finished)

120

100 -

80 -

60

40 1

20

—— MPI/Pro pmandel

—=— MPI/FT FT-pmandel

—— MPI/FT pmandel + 1 error

49

2 3

Time (seconds)

Modd |l. Results

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Example program: Game of life
Run-time overhead (~25%)

Overheads vary with data-size and
checkpointing frequency
|mplementation and experiments are stil|
underway

50

Qutline

 |ntroduction

e Background

* Model-based approach

e Usage and |mplementation
e Results

e Futurework

— More models
— Scalable FT
— Parallel NMR

e Conclusion

|||||||||||||||||||||||||

= COMPUTING LAB
DEPARTMENT OF COMPUTERISCIENCE

ol

Futurework

e More models

— ldentify more models
— Refine existing API to users based on feedback

» Scalable Fault tolerance (initial 1deas)
— Scalable detection:

» Research existing scalable detection methods
e Some to consider: hierarchical, probabilistic, gossiping, etc.

— Scalable recovery

* |n some applications processes organize into cohorts, except
during startup and finish

* Frequent communication within cohort, and infrequent global
communication

» Death of single process affects only othersin cohort

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

‘%‘ 52

Futurework, I1.

e Pardlel NMR [[Replicated Rank

— Redundant active/passive copies
of important processes

\ |\
— Issues with ordering of messages v
between COpIeS Message gérn 1
Rar}kll ‘}ﬂ IMessage from Rank P
o [Fault-tolerance benchmarks 4
— Common parameters to evaluate -
Impact/effectiveness of FT
middleware

- ==saas £> |Logical flow of MPI messages
- Programs and metrl CS s D |Actua| flow of MPI mmgel

e Red-time MPI/FT?

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<= 53

Qutline

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Introduction

Background

Model-based approach
Usage and implementation
Results

—uture work

Conclusions

Conclusions

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Need for fault-tolerant MPI presented
Drawbacks of existing efforts outlined
Model-based approach

Preliminary implementation and results
Future work

55

Questions

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

DEPARTMENT OF COMPUTER SCIENCE

=R

56

Reserved Slides

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

DEPARTMENT OF COMPUTER SCIENCE

=R

CoCheck

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Features
— Extension to Condor’ s single process checkpoint
— User aware
— Flushes messages before checkpoint for consistency
— Main emphasis.
» Relocation for load balancing
o Stalling for later resumption

Drawbacks
— High overheads
— Checkpoints entire process state

58

Egida

e Features

— A generic tool for checkpointing in distributed
systems

— User transparent
— Ported to MPICH

— Developers can compose their own flavor of
0gs, and roll-back recovery

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<= 50

Egida, I1.

e Main emphases
— Low overhead rollback and recovery
— Recovery coordination

— Protocol composition (for testing various
rotocol s)

 Disadvantages
— Checkpoints process state and messages

— Recovery requires detection of domino statesin
Some Cases

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

‘%‘ 60

FT-MPI

e Features
— (Fagg and Dongarra 2000) Part of Harness research
— Fault-tolerance as an add-on option
 Man Emphasis
— Health of communicator
— Methods to expand and shrink communicator

 Drawbacks

— Describes only recovery of MPI data structures, no
comprehensive recovery

— No methods to recover at application level

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 61

Star fish

e Features

— Partia implementation of MPI2

— Implements an event model for notification
 Main emphasis

— Adapt to dynamic cluster changes

— Provide ability for dynamic change in number of
Processes

— Fault tolerance is a byproduct
e Disadvantages
— No explicit detection

— No specific recovery procedure implementation at MPI
level

|||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 62

Model |1. APl Description

« MPIFT_ GetDeadRanks

— Same functionality asin model-1
— Can be invoked at any rank

e MPIFT RecoverRank

— Same functionality asin model-1

— Must be invoked by alive ranks. Recovery isa
collective operation among alive ranks

||||||||||||||||||||||||||

EEEEEEEEEEEEEEEEEEEEEEEEEEE

‘%‘ 63

Model Il. API Description, |1.

INT

MPIFT ChkptDo (
IN MPI Comm comm,

IN void *data to store,
IN INT data size,
OUT INT *chkpt num
) ;
o Storesuser provided data
o Currently uses afile for each number/dave (later move to incremental
chkpt)
o Collective call across all ranks
— Must be called by all ranks

— Succeeds only when all ranks are alive

— Each check pointed information has same identifier number across all
ranks (for use)

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Model I1. API Description, I11.

INT
MPIFT ChkptRecover (
IN MPI Comm comm,
OUT void *data retrived,
IN INT in data size,
OUT INT *out data size,
OUT INT *chkpt num retrieved
) ;
* Retrieves user provided state information

— Internal protocol to retrieve highest numbered information

— Protocol steps down to next highest number (if any rank has problems
opening current highest information)

e Collective call across al ranks

— Must be called by all ranks
— Succeeds only when all ranks are alive

MISSISSIPPI STATE UNIVERSITY
& PERFORMANCE
= COMPUTING LAB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<= 65

Model |l. code changes

MISSISSIPPI STATE UNIVERSITY

& PERFORMANCE

= COMPUTING LAB

sssssssssssssssssssssssssss

Distribute Data;

Initialize conditions;

While (! enuf iterations) {
Communicate part();
Compute part();

MPI Barrier();

}s

Original code for Model-11 applications

66

Model |l. code changes. (continued)

» B

// normal run

Distribute Data;

Initialize conditions;
Communicate part();

While (! enuf iterations) {
Compute part();

MPIFT GetDeadRanks (&deadcount, &deadarray,
MPI Barrier();

arraysize) ;
Get AppState (&state tostore);

if (deadcount >1){
MPIFT ChkptDo (&state_ tostore

for (I = 0.. Deadcount-1) {
MPIFT RecoverRank (deadarray[I]);

}; bi
MPIFT ChkptRecover (&state retrieved,

in data, &chkpt num) ;

in size, &out size, &chkpt num);
Restore AppState(state_retrieved);
}i
}

& PERFORMANCE
= COMPUTING LAB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

<3 67

