
MPI/FT: A model-based approach for low-
overhead fault-tolerance

Anthony Skjellum*$, Rajanikanth Batchu$,

Yoginder Dandass$, Murali Beddhu*

*MPI Software Technology
$Mississippi State University

June, 2002

2

Outline

• Introduction
• Background
• Model-based approach
• Usage and implementation
• Results
• Future work
• Conclusions

3

Outline

• Introduction
– Clusters
– MPI
– Motivation

• Background
• Model-based approach
• Usage and implementation
• Results
• Future work
• Conclusions

4

Introduction

• Clusters
– Compute nodes + High speed SANs
– Widespread usage
– Availability and reliability
– Efficacy for parallel computing

• MPI (MPI Forum 1995)
– Standard for message passing interface
– Provides services and abstractions
– Many implementations

• Commercial
• Academic

5

Motivation

• Popularity of clusters + MPI
– Wide deployment
– Usage of clusters in harsh environments (external

faults)
• High costs of failure

• Control systems
• Financial/e-commerce
• Web

• Insufficient reliability
– Shortcomings in the MPI standard
– Inadequate features in other MPI implementations.

6

Motivation, II.

Run-time of Parallel application

Harshness

Increasing probability
of failure

Space
environments

Ground
environments

Financial
analysis Scientific simulations

7

Motivation, III.

“There is a need for better way than simple
restart of MPI applications upon failure.”

8

Outline

• Introduction
• Background

– MPI standard
– Lessons learned from other research efforts

• Model-based approach
• Usage and implementation
• …

9

MPI Shortcomings

• MPI (MPI Forum 1995) standard’s limitations
– Main goals: performance, portability
– Static process model
– No comprehensive measures for reliability

• Detection
– Limited detection
– Signaled through error codes

• Recovery and Error Handling
– geared towards graceful termination,
– cannot always be invoked (fatal errors)
– coarse grained (per communicator)
– Inadequate

10

Lessons Learned

• Management of redundancy is essential
• “One size fits all” is not true
• Applications have differing requirements
• Transparency results in overhead
• Design/decision process of middleware is

complex
– Contrasting inputs
– Contrasting requirements

11

Outline

• Introduction
• Background
• Model-based approach

– Research approach
– Other features
– Models I and II

• Usage and implementation
• Results
• Future work
• Conclusions

12

Model-based Research Approach

• Our main goal is low-overhead fault-
tolerance

• All other efforts treat applications as
“blackbox” and provide same services
– User transparent checkpointing
– Process level checkpoints

• Each application has features that help in
achieving fault-detection and recovery

13

Model-based Research Approach, II.

• Identify features that help in effective
realization of fault-tolerance
– Communication topology (master/slave)
– Program structure (communication,

computation loops)
– Redundancy requirements
– Support from underlying layers

14

Model-based Research Approach, III.

– Classify models based on combination of
features and requirements

• Application models, models of execution
• Predetermined models, most commonly used
• Based on application features and requirement
• Adaptable
• Provide abstraction from complex decisions (next

slide)
– Take all the principles, and incorporate

selectively into existing middleware:
• MPI/FT™ is derived from MPI/Pro™.

15

Complexity of Decision Process

Decision

Process

Fault model

Hardware
Application

Goals

Application
Features

•Types of faults

•Occurrence rate

•Manifestations

• Communication
patterns:
(master/slave) and
simple SPMD

•Resource
requirements

•ABFT

•Resources,
memory available

•Fault-tolerance in
hardware (lead
hardened)

•Characteristics

•Predictability, recovery
time

•Performance, fault free
overhead

•FT features,
availability, and
reliability requirements

16

Other Features of MPI/FT

• Internal robustness
– Features and techniques to mask faults in

middleware space
– Coordinator and Self Checking Thread (SCT)

provide detection and internal robustness
– SCT

• Various levels of portability
• Adaptable to various fault rates and fault types

17

Other Features, II.

• Parallel NMR
– MPI process level redundancy
– Part of our current study/research

• Checkpointing
– User Aware and user initiated
– Functions to select data and recovery functions

• ABFT support
– application initiated kill and recovery

18

Model I.

• Features
– Simple master/slave work model
– Virtual star topology
– Master process does not get faults

• FT services
– Detection of slave deaths
– Death of a single slave doesn’t disable application
– API for notification and recovery

• Examples
– Pmandel, povray, many others in this category

19

Worker 1 Worker n-1

SCT 1 SCT n-1

Master

Coordinator

Flow of messages

Safe Process Area

Topology for Model I.

20

Model II.

• Features
– Complex SPMD
– Virtual all-to-all topology
– Programs written in iterative loops (communication +

computation)
• FT services

– Detection of slave deaths
– User aware, middleware assisted checkpoint

• Examples
– Game of life
– Discrete simulation

21

rank 1

SCT 1

rank n-1

SCT n-1

rank 0

Coordinator

SCT 2

rank 2

Flow of messages

Safe Process Area

Topology for Model II.

22

Outline

• Introduction
• Background
• Model-based approach
• Usage and implementation

– User steps
• Typical steps,
• Code changes

– Implementation
• Steps in FT
• Recovery in Model-I, Model-II

• Results
• Future work
• Conclusions

23

Typical Usage for MPI Application

• Understand the problem and identify the parallelism in the
program.

• Decide on a program process model (master/slave, SPMD,
hybrid, etc.) with deterministic communication patterns.

• Implement (code) on middleware.
• Launch the application with required number of processes.

In the absence of external faults the application will
successfully complete. A typical program launch could be

$>mpirun –np 4 -mach_file myMachfile
myParallelapp param1 param2

24

Usage for MPI/FT

• Understand the problem and identify the parallelism in the
program.

• Decide on a program process model (master/slave, SPMD, hybrid,
etc.) with deterministic communication patterns.

• Identify impacts of faults and region in code for notification and
recovery.

• Decide on application execution model.
• Implement (code) on a middleware and introduce FT specific

code.
• Launch the application with required number of processes.

Additionally static spare processes should be launched. A typical
program launch with fault-tolerance could be

$> mpiftrun -np 4 -sp 2 -mach_file myMachfile
-ftparam1 val1 -ftparam2 val2
myFTParallelapp param1 param2

25

Code Changes

• User applications need to be modified in order to
utilize FT features

• Simple and effective API for each model
• Code changes

– Do not alter existing structure
– Constant number of new FT API required irrespective

of original code length
• Model I : GetDeadRanks, RecoverRank
• Model II: Model-I API + RecoveryPoint,

ChkptDo, ChkptRecover

26

Model I. API description

INT
MPIFT_GetDeadRanks(
OUT INT *deadcount,
OUT INT *deadarrayranks,
IN INT array_size)

• Provides dead rank information to user
thread

• Can be invoked only in the master (rank 0)
process.

27

Model I. API description, II.

INT
MPIFT_RecoverRank(

IN INT RankToRecover
);

• Initiates recovery of a particular dead rank
• Can be invoked only in the master (rank 0)

process.

28

Create job array;
Send_Init(); Send_jobs();

While (! Jobs done){
Recv_results();
Send_jobs ();

};

Create job array;
Send_Init();Send_jobs();
Save_jobs();
While (! Jobs done){

MPIFT_GetDeadRanks(&deadcount, &deadarray,
arraysize);

if (deadcount >1){
for (I = 0.. Deadcount-1){

Recover_job();
MPIFT_RecoverRank(deadarray[I]);
Send_Init(); Send_jobs(); Save_jobs();

}else{
Recv_Results();
Delete_jobs();
Send_jobs();

}
};

Model I code changes

29

Fault
detection

Fault
notificationRecovery

Application
Begin End

Fault
detected

Recovery
Initiated

Recovery
Finished

Steps in FT, I.

30

Steps in FT, II.

• Detection
– FT Threads: Coordinator and SCT
– External heartbeats

• Between ranks
– Internal heartbeats

• Between SCT and MPI/FT send and receive progress threads
– User configurable frequency and timeouts

• Support for passing them through command line (mpiftrun)

31

Steps in FT, III.

• Fault notification to Application
– Model I polling based
– Model II polling based / evaluating interrupt based

• Recovery
– Model I:

• Only in context of master (rank 0)
– Model II:

• All alive ranks must be involved in recovery
• Checkpointing-based application recovery

32

Fault Detection using External Heartbeats

• External Heartbeats
– Between coordinator thread (master node) and

SCTs (worker nodes)
– Uses additional TCP connections between the

master and workers to send special
reply/request packets

– User configurable frequencies and timeout
factors

33

rank 0

rank 1 rank 2 rank n-1

Req
ue

st
Rep

ly

SCT SCT SCT

Coordinator

Process Thread

FT heartbeat path

Fault Detection using External Heartbeats,
II.

34

Fault Detection using Internal Heartbeats

• Between SCT and progress threads (send
and recv)
– Shared memory area for heartbeat counters, and

flags
• Progress threads inform SCT about

“expected busy time” when sending long
messages
– SCT will allow the expected time to expire

before initiating heartbeat requests

35

rank x

SCT

Process Thread

Progress
Thread 1

Progress
Thread 2

User
Thread

Request

Reply

FT heartbeat path

Fault Detection using Internal Heartbeats,
II.

36

SCT and Recv Thread

• SCT raises a heartbeat
request flag and
associates a timeout value

• SCT then sends a message
through the TCP
connection to recv thread

• Recv thread exits
select loop, increments
heartbeat counter

• SCT reads updated
counter after a specified
delay (heartbeat interval)

SCT

Recv
Progress
Thread

Post
request/flag

Shared area

Inform/wakeup
thread

Reply
/update
counter/
flag

37

SCT and Send Thread

• SCT raises a heartbeat
request flag and associates a
timeout value

• SCT increments the “send”
semaphore to wake the Send
thread

• Send thread increments
heartbeat counter

• SCT reads updated counter
after a specified delay
(heartbeat interval)

SCT

Send
Progress
Thread

Post
request/flag

Shared area
Reply
/update
counter/
flag

Update
semaphore

return
from
wait

Send thread
semaphore

38

Recovery

• Middleware level recovery
– bring process back into application group

• Application level recovery
– Bring new rank to required state

• Model I: Recovery in context of master
process alone

• Model II: Recovery in context of all alive
ranks

39

Spare rank
Master/Rank 0

Coordinator ThreadUser Thread
Fault detected

•Update notification

•Invalidate connection
GetDeadRanks()

User Notification

RecoverRank Start recovery
Coordinator Recovery
Release Spare Release message

Normal init
Setup Data
& FT paths

Accept FT
connection

Accept data
connection

Setup middleware
connections &
datastructures

Ti
m

el
in

e

End MPI_InitEnd CoordinatorRecoveryEnd RecoverRank
End

Middleware
level recovery

Model I. Recovery

40

Spare rankMaster/Rank 0

Coordinator
Thread

User
Thread End

Middleware
level recovery

Application specific
initialization

MPI Send/Recv

Startup data
Startup config

End
Application

level recovery

Ti
m

el
in

e
Model I. Recovery, II.

41

Spare rankMaster/Rank 0
Coordinator ThreadUser Thread

Ti
m

el
in

e

Other Alive Ranks
SCTUser Thread

Fault detected -
Invalidate connection
Notify alive ranks

Notification
Deadrank, X

GetDeadRanks
RecoverRank(x)

GetDeadRanks
RecoverRank(x)

Start recovery
SCT Recovery
Clean Q’s, re-init

Coordinator Recovery
Clean Q’s, re-init

Release message

Normal init
Setup Data
& FT paths

Accept FT
connection

Accept data
connection

Accept FT
connection

Accept/Connect
data connection

End MPI_InitEnd Coordinator
Recovery

End SCT
Recovery

End RecoverRankEnd RecoverRank

End
Middleware

level recovery

Model II. Recovery

42

Spare rankMaster/Rank 0

Coordinator
Thread

User
Thread

Ti
m

el
in

e

Other Alive Ranks

SCTUser
Thread

End
Middleware

level recovery
CheckpointRecoverCheckpointRecover CheckpointRecover

•Decide on chkptnum •Decide on chkptnum •Decide on chkptnum

End
Application

level recovery

Model II. Recovery, II.

•Retrieve data

•Unmarshal and
restore state

•Retrieve data

•Unmarshal and
restore state

•Retrieve data

•Unmarshal and
restore state

43

Model I. Recovery Recommendations

• Recovery of a dead slave is optional, as
applications can continue without recovering (in
most load balanced applications)

• Deciding factors
– Time for recovery (is recovery justified?)
– Application progress (no need for slaves at the end of

the application)
– Loss of performance is acceptable (fewer slaves)

44

Model II. Recovery Recommendations

• Dead ranks must be recovered
• Other option (not currently supported):

– shrink communicators and reorganize ranks

45

Outline

• Introduction
• Background
• Model-based approach
• Usage and implementation
• Results

– Parameters
– Message-passing overheads
– Model I
– Model II

• Future work
• Conclusion

46

Parameters

• Fault-free Overhead
– Overhead incurred in the absence of faults
– Increase in latency
– Decrease in bandwidth
– Increase in run-time
– Mainly because of detection, and checkpointing and

calls to FT API
• Fault-injected Overhead

– Overhead incurred in the presence of faults
– Recovery time

Note: All increases and decreases obtained in comparison
with standard 1.5 version of MPI/Pro™

47

Fault-free overhead (latency)

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1000 10000 100000 1000000 1E+07

Message Size (bytes)

La
te

nc
y

ov
er

he
ad

 %
Ext=0.5sec
Ext=1.0sec
Ext=2.0sec

Note: Logarithmic X axis

•Percentage increase
in latency

•Measured using a
ping-pong test

•Setup: PIII
750mhz/Linux 2.4,
Fast Ethernet

•“Ext” is frequency of
heartbeats

Message Passing Overheads (Latency)

48

Note: Logarithmic X axis

•Percentage decrease
in bandwidth

•Measured using a
modified ping-pong test

•Setup: PIII
750mhz/Linux 2.4, Fast
Ethernet

•“Ext” is frequency of
heartbeats

Fault-free Overhead (Bandwith)

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

1 10 100 1000 10000 100000 1000000 1E+07

Message Size (bytes)

B
an

dw
id

th
 O

ve
rh

ea
d

%
Ext=0.5sec
Ext=1.0sec
Ext=2.0sec

Message Passing Overheads (Bandwidth)

49

0

20

40

60

80

100

120

0 1 2 3 4 5 6

Time (seconds)

Pr
og

re
ss

 (p
ix

el
s

fin
is

he
d)

MPI/Pro pmandel

MPI/FT FT-pmandel

MPI/FT pmandel + 1 error

Model I. results

•Example program:
pmandel fractal program

• Run-time increase (~ 12
%)

• Middleware Recovery
time ~32 milliseconds

•Application level
recovery time ~ 250
milliseconds

•Pentium 500 Mhz,
128mb RAM, Linux 2.2

50

Model II. Results

• Example program: Game of life
• Run-time overhead (~25%)
• Overheads vary with data-size and

checkpointing frequency
• Implementation and experiments are still

underway

51

Outline

• Introduction
• Background
• Model-based approach
• Usage and Implementation
• Results
• Future work

– More models
– Scalable FT
– Parallel NMR

• Conclusion

•

52

Future work

• More models
– Identify more models
– Refine existing API to users based on feedback

• Scalable Fault tolerance (initial ideas)
– Scalable detection:

• Research existing scalable detection methods
• Some to consider: hierarchical, probabilistic, gossiping, etc.

– Scalable recovery
• In some applications processes organize into cohorts, except

during startup and finish
• Frequent communication within cohort, and infrequent global

communication
• Death of single process affects only others in cohort

53

Future work, II.

• Parallel NMR
– Redundant active/passive copies

of important processes
– Issues with ordering of messages

between copies

• Fault-tolerance benchmarks
– Common parameters to evaluate

impact/effectiveness of FT
middleware

– Programs and metrics

• Real-time MPI/FT?

Rank 1

Logical flow of MPI messages
Actual flow of MPI message

Replicated Rank 0

Message from Rank 2
Message from

Rank 1

Rank 3Rank 2

54

Outline

• Introduction
• Background
• Model-based approach
• Usage and implementation
• Results
• Future work
• Conclusions
• Conclusion

55

Conclusions

• Need for fault-tolerant MPI presented
• Drawbacks of existing efforts outlined
• Model-based approach
• Preliminary implementation and results
• Future work

56

Questions

?
??

?? ?

?

?

?

?

?

Reserved Slides

58

CoCheck

• Features
– Extension to Condor’s single process checkpoint
– User aware
– Flushes messages before checkpoint for consistency
– Main emphasis:

• Relocation for load balancing
• Stalling for later resumption

• Drawbacks
– High overheads
– Checkpoints entire process state

59

Egida

• Features
– A generic tool for checkpointing in distributed

systems
– User transparent
– Ported to MPICH
– Developers can compose their own flavor of

logs, and roll-back recovery

60

Egida, II.

• Main emphases
– Low overhead rollback and recovery
– Recovery coordination
– Protocol composition (for testing various

protocols)
• Disadvantages

– Checkpoints process state and messages
– Recovery requires detection of domino states in

some cases

61

FT-MPI

• Features
– (Fagg and Dongarra 2000) Part of Harness research
– Fault-tolerance as an add-on option

• Main Emphasis
– Health of communicator
– Methods to expand and shrink communicator

• Drawbacks
– Describes only recovery of MPI data structures, no

comprehensive recovery
– No methods to recover at application level

62

Starfish

• Features
– Partial implementation of MPI2
– Implements an event model for notification

• Main emphasis
– Adapt to dynamic cluster changes
– Provide ability for dynamic change in number of

processes
– Fault tolerance is a byproduct

• Disadvantages
– No explicit detection
– No specific recovery procedure implementation at MPI

level

63

Model II. API Description

• MPIFT_GetDeadRanks
– Same functionality as in model-1
– Can be invoked at any rank

• MPIFT_RecoverRank
– Same functionality as in model-1
– Must be invoked by alive ranks. Recovery is a

collective operation among alive ranks

64

Model II. API Description, II.
INT
MPIFT_ChkptDo(

IN MPI_Comm comm,
IN void *data_to_store,
IN INT data_size,
OUT INT *chkpt_num
);

• Stores user provided data
• Currently uses a file for each number/slave (later move to incremental

chkpt)
• Collective call across all ranks

– Must be called by all ranks
– Succeeds only when all ranks are alive
– Each check pointed information has same identifier number across all

ranks (for use)

65

Model II. API Description, III.
INT
MPIFT_ChkptRecover(

IN MPI_Comm comm,
OUT void *data_retrived,
IN INT in_data_size,
OUT INT *out_data_size,
OUT INT *chkpt_num_retrieved
);

• Retrieves user provided state information
– Internal protocol to retrieve highest numbered information
– Protocol steps down to next highest number (if any rank has problems

opening current highest information)
• Collective call across all ranks

– Must be called by all ranks
– Succeeds only when all ranks are alive

66

Distribute Data;
Initialize conditions;
While (! enuf_iterations){

Communicate_part();
Compute_part();
MPI_Barrier();

};

Model II. code changes

Original code for Model-II applications

67

Distribute Data;
Initialize conditions;
While (! enuf_iterations){
MPIFT_GetDeadRanks(&deadcount, &deadarray,

arraysize);
if (deadcount >1){

for (I = 0.. Deadcount-1){
MPIFT_RecoverRank(deadarray[I]);

};
MPIFT_ChkptRecover(&state_retrieved,

in_size,&out_size, &chkpt_num);
Restore_AppState(state_retrieved);

};
}

Model II. code changes. (continued)

// normal run
Communicate_part();
Compute_part();
MPI_Barrier();
Get_AppState(&state_tostore);
MPIFT_ChkptDo(&state_tostore

in_data,&chkpt_num);
};

A

B

