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Introduction

• Clusters
– Compute nodes + High speed SANs
– Widespread usage
– Availability and reliability
– Efficacy for parallel computing

• MPI (MPI Forum 1995)
– Standard for message passing interface
– Provides services and abstractions
– Many implementations 

• Commercial
• Academic
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Motivation

• Popularity of clusters + MPI
– Wide deployment
– Usage of clusters in harsh environments (external 

faults)
• High costs of failure

• Control systems
• Financial/e-commerce
• Web

• Insufficient reliability
– Shortcomings in the MPI standard
– Inadequate features in other MPI implementations.



6

Motivation, II.

Run-time of Parallel application

Harshness

Increasing  probability 
of failure

Space 
environments

Ground 
environments

Financial 
analysis Scientific simulations
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Motivation, III.

“There is a need for better way than simple 
restart of MPI applications upon failure.”
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MPI Shortcomings 

• MPI (MPI Forum 1995) standard’s limitations
– Main goals: performance, portability
– Static process model
– No comprehensive measures for reliability

• Detection
– Limited detection 
– Signaled through error codes

• Recovery and Error Handling
– geared towards graceful termination,
– cannot always be invoked (fatal errors)
– coarse grained (per communicator)
– Inadequate 
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Lessons Learned

• Management of redundancy is essential
• “One size fits all”  is not true
• Applications have differing requirements
• Transparency results in overhead
• Design/decision process of middleware is 

complex
– Contrasting inputs 
– Contrasting requirements 
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Model-based Research Approach

• Our main goal is low-overhead fault-
tolerance

• All other efforts treat applications as 
“blackbox” and provide same services
– User transparent checkpointing
– Process level checkpoints

• Each application has features that help in 
achieving fault-detection and recovery 
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Model-based Research Approach, II.

• Identify features that help in effective 
realization of fault-tolerance
– Communication topology (master/slave)
– Program structure (communication, 

computation loops)
– Redundancy requirements
– Support from underlying layers
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Model-based Research Approach, III.

– Classify models based on combination of 
features and requirements

• Application models, models of execution
• Predetermined models, most commonly used
• Based on application features and requirement
• Adaptable
• Provide abstraction from complex decisions (next 

slide)
– Take all the principles, and incorporate 

selectively into existing middleware:
• MPI/FT™ is derived from MPI/Pro™.
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Complexity of Decision Process

Decision

Process

Fault model

Hardware
Application 

Goals

Application 
Features

•Types of faults

•Occurrence rate

•Manifestations

• Communication 
patterns: 
(master/slave) and 
simple SPMD

•Resource 
requirements

•ABFT

•Resources, 
memory available

•Fault-tolerance in 
hardware (lead 
hardened)

•Characteristics

•Predictability, recovery 
time

•Performance, fault free 
overhead

•FT features, 
availability, and 
reliability requirements
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Other Features of MPI/FT

• Internal robustness
– Features and techniques to mask faults in 

middleware space
– Coordinator and Self Checking Thread (SCT) 

provide detection and internal robustness
– SCT

• Various levels of portability 
• Adaptable to various fault rates and fault types
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Other Features, II.

• Parallel NMR
– MPI process level redundancy
– Part of our current study/research

• Checkpointing
– User Aware and user initiated
– Functions to select data and recovery functions

• ABFT support
– application initiated kill and recovery
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Model I.

• Features
– Simple master/slave work model
– Virtual star topology
– Master process does not get faults 

• FT services
– Detection of slave deaths
– Death of a single slave doesn’t disable application
– API for notification and recovery

• Examples
– Pmandel, povray, many others in this category
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Model II.

• Features
– Complex SPMD
– Virtual all-to-all topology
– Programs written in iterative loops (communication + 

computation)
• FT services

– Detection of slave deaths
– User aware, middleware assisted checkpoint

• Examples
– Game of life
– Discrete simulation
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Typical Usage for MPI Application

• Understand the problem and identify the parallelism in the 
program.

• Decide on a program process model (master/slave, SPMD, 
hybrid, etc.) with deterministic communication patterns.   

• Implement (code) on middleware.
• Launch the application with required number of processes. 

In the absence of external faults the application will 
successfully complete. A typical program launch could be

$>mpirun –np 4 -mach_file myMachfile 
myParallelapp param1 param2
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Usage for MPI/FT

• Understand the problem and identify the parallelism in the 
program.

• Decide on a program process model (master/slave, SPMD, hybrid, 
etc.) with deterministic communication patterns.   

• Identify impacts of faults and region in code for notification and 
recovery.

• Decide on application execution model.
• Implement (code) on a middleware and introduce FT specific 

code.
• Launch the application with required number of processes. 

Additionally static spare processes should be launched. A typical 
program launch with fault-tolerance could be

$> mpiftrun -np 4 -sp 2 -mach_file myMachfile   
-ftparam1 val1 -ftparam2 val2
myFTParallelapp param1 param2
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Code Changes

• User applications need to be modified in order to 
utilize FT features

• Simple and effective API for each model
• Code changes 

– Do not alter existing structure
– Constant number of new FT API required irrespective 

of original code length
• Model I : GetDeadRanks, RecoverRank
• Model II: Model-I API + RecoveryPoint, 

ChkptDo, ChkptRecover
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Model I. API description

INT
MPIFT_GetDeadRanks(
OUT INT *deadcount, 
OUT INT *deadarrayranks, 
IN  INT  array_size)

• Provides dead rank information to user 
thread

• Can be invoked only in the master (rank 0) 
process. 
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Model I. API description, II.

INT
MPIFT_RecoverRank(

IN INT RankToRecover
);

• Initiates recovery of a particular dead rank 
• Can be invoked only in the master (rank 0) 

process. 
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Create job array;
Send_Init(); Send_jobs();

While (! Jobs done){
Recv_results();
Send_jobs ();

};

Create job array;
Send_Init();Send_jobs(); 
Save_jobs();
While (! Jobs done){

MPIFT_GetDeadRanks(&deadcount, &deadarray, 
arraysize);                   

if (deadcount >1){ 
for (I = 0.. Deadcount-1){

Recover_job(); 
MPIFT_RecoverRank(deadarray[I]);
Send_Init(); Send_jobs(); Save_jobs();

}else{
Recv_Results();
Delete_jobs();
Send_jobs();

}
};

Model I code changes
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Steps in FT, II.

• Detection
– FT Threads: Coordinator and SCT
– External heartbeats

• Between ranks
– Internal heartbeats

• Between SCT and MPI/FT send and receive progress threads
– User configurable frequency and timeouts

• Support for passing them through command line (mpiftrun)
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Steps in FT, III.

• Fault notification to Application
– Model I polling based
– Model II polling based / evaluating interrupt based

• Recovery
– Model I: 

• Only in context of master (rank 0)
– Model II: 

• All alive ranks must be involved in recovery
• Checkpointing-based application recovery
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Fault Detection using External Heartbeats

• External Heartbeats
– Between coordinator thread (master node) and 

SCTs (worker nodes)
– Uses additional TCP connections between the 

master and workers to send special 
reply/request packets

– User configurable frequencies and timeout 
factors
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Fault Detection using Internal Heartbeats

• Between SCT and progress threads (send 
and recv)
– Shared memory area for heartbeat counters, and 

flags
• Progress threads inform  SCT about 

“expected busy time” when sending long 
messages
– SCT will allow the expected time to expire 

before initiating heartbeat requests
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SCT and Recv Thread

• SCT raises a heartbeat 
request flag and  
associates a timeout value

• SCT then sends a message 
through the TCP 
connection to recv thread 

• Recv thread exits 
select loop, increments 
heartbeat counter

• SCT reads updated 
counter after a specified 
delay (heartbeat interval)

SCT

Recv
Progress 
Thread

Post 
request/flag

Shared area

Inform/wakeup 
thread

Reply 
/update 
counter/
flag



37

SCT and Send Thread

• SCT raises a heartbeat 
request flag and  associates a 
timeout value

• SCT increments the “send” 
semaphore to wake the Send 
thread

• Send thread increments 
heartbeat counter

• SCT reads updated counter 
after a specified delay 
(heartbeat interval)

SCT

Send 
Progress 
Thread

Post 
request/flag

Shared area
Reply 
/update 
counter/
flag

Update        
semaphore

return 
from 
wait

Send thread 
semaphore
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Recovery

• Middleware level recovery
– bring process back into application group

• Application level recovery
– Bring new rank to required state

• Model I: Recovery in context of master 
process alone

• Model II: Recovery in context of all alive 
ranks 
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•Retrieve data 

•Unmarshal and 
restore state

•Retrieve data 

•Unmarshal and 
restore state

•Retrieve data 

•Unmarshal and 
restore state
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Model I. Recovery Recommendations

• Recovery of a dead slave is optional, as 
applications can continue without recovering (in 
most load balanced applications)

• Deciding factors
– Time for recovery (is recovery justified?)
– Application progress (no need for slaves at the end of 

the application)
– Loss of performance is acceptable (fewer slaves)
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Model II. Recovery Recommendations

• Dead ranks must be recovered 
• Other option (not currently supported):

– shrink communicators and reorganize ranks
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Parameters

• Fault-free Overhead
– Overhead incurred in the absence of faults
– Increase in latency
– Decrease in bandwidth
– Increase in run-time
– Mainly because of detection, and checkpointing and 

calls to FT API 
• Fault-injected Overhead

– Overhead incurred in the presence of faults
– Recovery time 

Note: All increases and decreases obtained in comparison 
with standard 1.5 version of MPI/Pro™
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Note: Logarithmic X axis

•Percentage decrease 
in bandwidth

•Measured using a 
modified ping-pong test

•Setup: PIII 
750mhz/Linux 2.4, Fast 
Ethernet

•“Ext” is frequency of 
heartbeats

Fault-free Overhead (Bandwith)
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Model I. results

•Example program: 
pmandel fractal program

• Run-time increase (~ 12 
%)

• Middleware Recovery 
time ~32 milliseconds

•Application level 
recovery time ~ 250 
milliseconds

•Pentium 500 Mhz, 
128mb RAM, Linux 2.2
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Model II. Results

• Example program: Game of life
• Run-time overhead (~25%)
• Overheads vary with data-size and 

checkpointing frequency
• Implementation and experiments are still 

underway 
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Future work

• More models
– Identify more models
– Refine existing API to users based on feedback

• Scalable Fault tolerance (initial ideas)
– Scalable detection: 

• Research existing scalable detection methods
• Some to consider: hierarchical, probabilistic, gossiping, etc.

– Scalable recovery 
• In some applications processes organize into cohorts, except 

during startup and finish
• Frequent communication within cohort, and infrequent global 

communication
• Death of  single process affects only others in cohort



53

Future work, II.

• Parallel NMR
– Redundant active/passive copies 

of important processes
– Issues with ordering of messages 

between copies

• Fault-tolerance benchmarks
– Common parameters to evaluate 

impact/effectiveness of FT 
middleware

– Programs and metrics

• Real-time MPI/FT?

Rank 1

Logical flow of MPI messages
Actual flow of MPI message

Replicated Rank 0

Message from Rank 2
Message from 

Rank 1

Rank 3Rank 2
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Conclusions

• Need for fault-tolerant MPI presented
• Drawbacks of existing efforts outlined
• Model-based approach
• Preliminary implementation and results
• Future work 
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Questions

?
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CoCheck

• Features
– Extension to Condor’s single process checkpoint
– User aware
– Flushes messages before checkpoint for consistency
– Main emphasis:

• Relocation for load balancing
• Stalling for later resumption

• Drawbacks
– High overheads
– Checkpoints entire process state
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Egida

• Features
– A generic tool for checkpointing in distributed 

systems
– User transparent
– Ported to MPICH
– Developers can compose their own flavor of 

logs, and roll-back recovery
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Egida, II.

• Main emphases
– Low overhead rollback and recovery
– Recovery coordination
– Protocol composition (for testing various 

protocols)
• Disadvantages

– Checkpoints process state and messages 
– Recovery requires detection of domino states in 

some cases
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FT-MPI

• Features
– (Fagg and Dongarra 2000) Part of Harness research 
– Fault-tolerance as an add-on option 

• Main Emphasis
– Health of communicator
– Methods to expand and shrink communicator 

• Drawbacks
– Describes only recovery of MPI data structures, no 

comprehensive recovery 
– No methods to recover at application level
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Starfish

• Features
– Partial implementation of MPI2 
– Implements an event model for notification

• Main emphasis
– Adapt to dynamic cluster changes
– Provide ability for dynamic change in number of 

processes
– Fault tolerance is a byproduct

• Disadvantages
– No explicit detection
– No specific recovery procedure implementation at MPI 

level
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Model II. API Description

• MPIFT_GetDeadRanks 
– Same functionality as in model-1
– Can be invoked at any rank

• MPIFT_RecoverRank
– Same functionality as in model-1
– Must be invoked by alive ranks. Recovery is a 

collective operation among alive ranks
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Model II. API Description, II.
INT 
MPIFT_ChkptDo(

IN MPI_Comm comm,
IN  void *data_to_store,
IN  INT  data_size,
OUT INT  *chkpt_num
);

• Stores user provided data 
• Currently uses a file for each number/slave ( later move to incremental 

chkpt )
• Collective call across all ranks

– Must be called by all ranks 
– Succeeds only when all ranks are alive
– Each check pointed information has same identifier number across all 

ranks (for use )
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Model II. API Description, III.
INT 
MPIFT_ChkptRecover(

IN MPI_Comm comm,
OUT void *data_retrived,
IN  INT   in_data_size,
OUT INT   *out_data_size,
OUT INT   *chkpt_num_retrieved
);

• Retrieves user provided state information
– Internal protocol to retrieve highest numbered information 
– Protocol steps down to next highest number (if any rank has problems 

opening current highest information)
• Collective call across all ranks

– Must be called by all ranks 
– Succeeds only when all ranks are alive
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Distribute Data;
Initialize conditions;
While (! enuf_iterations){

Communicate_part();
Compute_part();
MPI_Barrier();

};

Model II. code changes

Original code for Model-II applications
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Distribute Data;
Initialize conditions;
While (! enuf_iterations){
MPIFT_GetDeadRanks(&deadcount, &deadarray,

arraysize);                   
if (deadcount >1){ 

for (I = 0.. Deadcount-1){
MPIFT_RecoverRank(deadarray[I]);     

};
MPIFT_ChkptRecover(&state_retrieved,

in_size,&out_size, &chkpt_num); 
Restore_AppState(state_retrieved);

};
}

Model II. code changes. (continued)

// normal run
Communicate_part();
Compute_part();
MPI_Barrier();
Get_AppState(&state_tostore);          
MPIFT_ChkptDo(&state_tostore    

in_data,&chkpt_num);
};

A

B


