
Fault-Tolerance?
No Problemo.

Jeff Napper,
Lorenzo Alvisi, Calvin Lin, Alison Smith

The University of Texas at Austin 



Fault-Tolerance: The Past…

• Life-critical applications
– Tolerate arbitrary failures
– Small systems (101)
– Goal: Continuous availability

• Cost is secondary concern
– Expensive resources
– High overhead



The Present…

• Mission-critical applications
– Tolerate crash failures
– Medium systems (102)
– Goal: Fast recovery

• Cost is important factor
– Lower overhead
– Passive replication



The Future

• Large applications
– Tolerate crash failures
– Large-scale systems (104)
– Goal: Shorter time to completion

• Efficiency is important factor
– Lower costs
– Increase scalability



Outline

• Fault-tolerance at a glance
• Current work — Egida
• Future Work

– Implicit Coordinated Checkpointing
– Scalable Message Logging

• Conclusions



Flavors of Distributed 
Checkpointing

Independent

aSimplicity
aAutonomy
aScalability
rDomino Effect

Coordinated

aConsistent States
aGood Performance
aGarbage Collection
rScalability

Communication-
induced

aConsistent States
aAutonomy
aScalability
rPerformance



Unifying Theme

• All checkpointing protocols enforce 
global consistency

• The challenge is to ensure progress of 
the consistent cut 
– Coordination reduces the number of 

useless checkpoints



Message Logging at a Glance

• Log information on stable storage during 
failure-free execution

• Use that information to recover from failure
p1

p2

m2

Orphan: process that depends on an unrecoverable 
state of a failed process
Piecewise determinism: all non-deterministic events 
can be identified and logged in the event’s determinant



Flavors of Message Logging

aNo orphans
aEasy recovery
rBlocks

aNon-blocking
aNo orphans
rComplex recovery

aNon-blocking
rOrphans
rComplex recovery

Pessimistic Optimistic Causal

p1

p2

p3

m2

m1 m3



Unifying Theme

• All message logging protocols enforce the no-
orphans consistency condition

• The challenge is managing non-determinism
– A process may interact with other processes or with 

the environment, generating dependencies on these 
events

• Characterize a protocol according to how it 
handles non-determinism
– Identify relevant events 
– Specify which actions to take when an event occurs



Egida

• Transparent
– Provides seamless integration with applications

• Extensible
– Easily handles new sources of non-determinism
– Easily includes new protocols

• Flexible
– Allows developer to select best protocol 

• Powerful
– Allows experiments with different protocols to 

assess costs



Events in Egida

• Non-deterministic events
– message delivery, file read, lock acquire

• Failure-detection events
– timeout, message delivery

• Internal dependency-generating events
– message send, file write, lock release

• External dependency-generating events
– output to printer, screen, or file

• Checkpointing events
– timeout, explicit invocation, message delivery



The Architecture

• Event handlers invoked on relevant 
events

• Library of modules
– Implement core functionalities:

Checkpointing, managing determinants, logging, 
piggybacking, detecting orphans, restarting process

– Provide basic services
Stable storage, failure detection, etc.

– Single interface for multiple protocols



Protocol Specification

• Use a specification language to select 
desired modules (at compile-time) 
corresponding to implementations

• Synthesize protocol automatically from 
specification

/* non-deterministic events statement */
receive:

determinant: {source, ssn, dest, desn}
Log: determinant on volatile memory of

processes

/* checkpoint statement */
Checkpoint: independent,

asynchronous on NFS disk
Implementation: incremental
Scheduling policy: periodic



Integration with MPI
• MPICH:

– 2-layered architecture
– Upper layer exports MPI 

functions to application
– Lower layer performs 

data transfer using 
platform specific libraries 

• Modifications to MPICH:
– In upper layer, replace 

calls to P4 (send/recv) 
with corresponding calls 
to Egida API

• Modification to P4:
– Handle socket-level errors
– Allow recovering process 

to set up connections with 
correct processes

• Modifications to 
Applications:

NONEP4
Egida

MPICH
Application



Current Status

• Porting Egida from Solaris to Linux
• Specializing Egida for MPICH

– Use tag information to determine 
communication structure



Scalable Fault-Tolerance?

• Current approaches do not scale
– Coordinated checkpointing requires all 

processes to write to stable storage nearly 
simultaneously

– Message logging requires logging all 
determinants and performing broadcasts 
during recovery

• Assumption: We cannot use 
master/slave model for all computations



Rules of Thumb

• Minimize use of stable storage
– How much data is written? How often?
– How to store process updates cheaply?

• Compute cycles are cheap
– Trade computation for either 

communication or stable storage?
• Communication is often structured

– How to exploit structure?



Implicit Coordinated 
Checkpointing

• Assumption: Typical 
coordinated checkpoints 
(Chandy-Lamport) are 
very expensive
rRequires nearly 

simultaneous ckpts 
rLimited by file system 

bandwidth

• Solution: Schedule 
checkpoints to use 
available bandwidth
aSimple communication 

structure allows compiler 
to build message 
dependency graph

aCompiler statically 
assigns time to 
checkpoint to build 
consistent cut

• Efficient checkpointing is required for any passive
replication solution



Scalable Message Logging

• Assumption: The 
aggregate size of 
messages sent is 
smaller than ckpts
rCheckpoints include all 

modified state
rOverhead incurred per 

message

• Solution: Scale 
message logging using 
hierarchical structures
aAllows smaller recovery 

groups to eliminate 
broadcasts

aUse cheap compute 
cycles to recreate state 
from messages

• Adapt protocols to structured communication 
• Message logging may be cheaper than high-

frequency checkpointing



Conclusions

• Try simplest approach first!
• Coordinated checkpointing is the 

simplest form of fault-tolerance
– Can we make it scalable?
– Is the overhead low enough?

• Egida allows us to explore rollback 
recovery protocols
– Is the overhead low enough?


