Fault Tolerance in MPI Programs

Bill Gropp
Rusty Lusk
Mathematics and Computer Science Division
Argonne National Laboratory

Outline

* Myths about MPI and fault tolerance
« Definitions of fault tolerance
« Relevant parts of the MPI standard

 MPI can support a class of fault-tolerant programs

 If implementation provides certain features
o Example of fault-tolerant master-slave program in MPI

« Modifying the MPI Standard to allow more fault-
tolerant programs
e Changing semantics of existing MPI functions — Ack!!
e Adding new MPI objects and methods

« Disclaimer — These are preliminary thoughts.

I‘I‘ECS Argonne National Laboratory + University of Chicago

Myths and Facts

Myth: MPI behavior is defined by its implementations.
MPI behavior is defined by the Standard Document at

Myth: MPI is not fault tolerant.

This statement is not well formed. Its truth depends on what it
means, and one can’t tell from the statement itself. More later.

Myth: All processes of MPI programs exit if any one process crashes.

Sometimes they do; sometimes they don’t; sometimes they
should; sometimes they shouldn’t. More later.

Myth: Fault tolerance means reliability.
These are completely different. Again, definitions are required.

I‘I‘ECS Argonne National Laboratory + University of Chicago

More Myths and Facts

Myth: Fault tolerance is independent of performance.

In general, no. Perhaps for some (weak) aspects, yes. Support
for fault tolerance will negatively impact performance.

Myth: Fault tolerance is a property of the MPI standard (which it doesn't
have.
Fault tolerance is not a property of the specification, so it can’t not
have it. ©

Myth: Fault tolerance is a property of an MPI implementation (which
most don’t have).

Fault tolerance is a property of a program. Some implementations
make it easier to write fault-tolerant programs than others do.

I‘I‘ECS Argonne National Laboratory + University of Chicago

What Is Fault Tolerance Anyway?

« A fault-tolerant program can “survive” (in some sense we need
to discuss) a failure of the infrastructure (machine crash,
network failure, etc.)

« This is not in general completely attainable. (What if all
processes crash?)

 How much is recoverable depends on how much state the failed
component holds at the time of the crash.

* In many master-slave algorithms a slave holds a small amount of
easily recoverable state (the most recent subproblem it received).

* In most mesh algorithms a process may hold a large amount of
difficult-to-recover state (data values for some portion of the
grid/matrix).

 Communication networks hold varying amount of state in
communication buffers.

I‘I‘ECS Argonne National Laboratory + University of Chicago

Types of “Survival”

 The MPI library automatically recovers.

* Program is notified of problem and takes corrective
action.

e Certain operations, but not all, become invalid.
* Program can be restarted from checkpoint.
* Perhaps combinations of these.

I‘I‘ECS Argonne National Laboratory + University of Chicago

What Does the MPI Standard Say That Is
Relevant to Fault Tolerance?

 MPI requires reliable* communication. An
Implementation in which a message is corrupted In
transit is a non-conforming MPI implementation.
(People at LANL know who you are.)

e MPI allows users to attach error handlers to
communicators.

« MPI_ERRORS ABORT, the “all-fall-down” error handler, is
required to be the default.

« MPI_ERRORS RETURN can be used to allow applications (and
especially libraries) to handle errors.

e Users can write and attach their own error handlers on a
communicator-by-communicator basis.

*guaranteed delivery, for network types

I‘I‘ECS Argonne National Laboratory + University of Chicago

What Does the Standard Say About
Errors?

« A set of errors is defined, to be returned by MPI functions if
MPI_ERRORS_RETURN is set.

* Implementations are allowed to extend this set.

* Itis not required that subsequent operations work after an error
Is returned. (Or that they fail, either.)

* It may not be possible for an implementation to recover from
some kinds of errors even enough to return an error code (and
such implementations are conforming).

e Much is left to the implementation; some conforming
Implementations may return errors in situations where other
conforming implementations abort. (See “quality of
Implementation” issue in the Standard.)

I‘I‘ECS Argonne National Laboratory + University of Chicago

Some Approaches to Fault Tolerance In
MP| Programs

« Master-slave algorithms using intercommunicators
* NoO change to existing MPIl semantics
« Example follows

e Checkpointing
* In wide use now

e Plain vs. fancy
 MPI-IO can help make it efficient

« Change semantics of existing MPI functions
 Don’t go there!

« Extending MPI with some new objects in order to allow
a wider class of fault-tolerant programs.
e The “pseudo-communicator”

I‘I‘ECS Argonne National Laboratory + University of Chicago

Master/Slave Programs with
Intercommunicators

* One type of program easy to make fault-tolerant is the
master/slave paradigm ().

e This Is because slaves hold very small amount of state
at a time.

e Such an algorithm can be expressed in MPI, using
Intercommunicators to provide a level of fault-
tolerance, if the MPI implementation provides a robust
Implementation of MPI_ ERRRORS RETURN for
Intercommmunicators.

I‘I‘ECS Argonne National Laboratory + University of Chicago

A Fault-Tolerant MPI Master/Slave
Program

* Master process comes up alone first.

e size of MPI_COMM_WORLD =1

It creates slaves with MPI_Comm_spawn

» Gets back an intercommunicator for each one

 Sets MPI_ERRORS_RETURN on each

e Master communicates with each slave using its particular
communicator

 MPI_Send/Recv to/from rank O in remote group

« Master maintains state information to restart each subproblem in case
of failure

* Master may start replacement slave with MPI_Comm_spawn
e Slaves may themselves be parallel

I‘I‘ECS Argonne National Laboratory + University of Chicago

Checkpointing

* Application-driven vs. externally-driven

Application knows when message-passing subsystem is quiescent

Checkpointing every n timesteps allows very long (months) ASCI
computations to proceed routinely in face of outages.

Externally driven checkpointing requires much more cooperation from
MPI implementation, which may impact performance.

* MPI-10 can help with large, application-driven checkpoints
o “Extreme” checkpointing — MPICH-V (Paris group)

All messages logged
States periodically checkpointed asynchronously

Can restore local state from checkpoint + message log since last
checkpoint

Not high-performance
Scalability challenges

I‘I‘ECS Argonne National Laboratory + University of Chicago

Extending MPI

 New objects and methods with new syntax and semantics to
support the expression of fault-tolerant algorithms in MPI

« Example — The MPI_Process_Array object, somewhat like an MPI
Communicator (retains idea of context), but
* Has dynamic instead of constant size
* Rank of process replaced by constant array index
* No collective operations for process arrays

 New send/receive operations would be defined for processes identified by
an index into a process array.

 Can have attached error handler

« Might be more convenient than an intercommunicator-based
approach for master/slave computations where slaves
communicate among themselves.

I‘I‘ECS Argonne National Laboratory + University of Chicago

Conclusion

« Fault tolerance is a property of an algorithm, not a library
 Management of state is the key

e |tis important to be able to express a fault-tolerant parallel
algorithm as an MPI program

e Some solutions are already in use

* Implementations can provide more support than they currently
do for fault tolerance, without changing the MPI specification

« Additions to the MPI Standard may be needed to extend the
class of fault tolerant algorithms that can be expressed in MPI

* Further research is needed, first in improvements to MPI-2
Implementations, and eventually into MPI extensions

I‘I‘ECS Argonne National Laboratory + University of Chicago

