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Abstract

The vast amount of textual information available today is useless un-
less it can be e�ectively and e�ciently searched. In information retrieval,
we wish to match queries with relevant documents. Documents can be
represented by the terms that appear within them, but literal matching of
terms does not necessarily retrieve all relevant documents. Latent Seman-
tic Indexing represents documents by approximations and tends to cluster
documents on similar topics even if their term pro�les are somewhat dif-
ferent. This approximate representation is usually accomplished using a
low-rank singular value decomposition (SVD) approximation. In this pa-
per, we use an alternate decomposition, the semi-discrete decomposition
(SDD). In our tests, for equal query times, the SDD does as well as the
SVD and uses less than one-tenth the storage. Additionally, we show how
to update the SDD for a dynamically changing document collection.

1 Introduction

The vast amount of textual information available today is useless unless it can
be e�ectively and e�ciently searched. In information retrieval, we wish to
match user information requests, or queries, with relevant information items, or
documents. Examples of information retrieval systems include electronic library
catalogs, the grep string-matching tool in Unix, and search engines such as Alta
Vista for the World Wide Web.

Oftentimes, users are searching for documents about a particular concept
that may not be accurately described by the list of keywords. For example, a
search on a term such as \Mark Twain" is unlikely to �nd all documents about

�Applied Mathematics Program, University of Maryland, College Park, MD 20742. The
work of this author was supported by the NSA, NPSC, and CCS. (kolda@math.umd.edu)

yDepartment of Computer Science and Institute for Advanced Computer Studies, Univer-
sity of Maryland, College Park, MD 20742. The work of this author was supported by the
National Science Foundation under Grant CCR-95-03126 (oleary@cs.umd.edu)

1



\Samuel Clemens." We might know that these are the same people, but the
information retrieval systems have no way of knowing. Latent semantic indexing
(LSI) is an approach to retrieval that attempts to represent such information
and thus �nd latent relationships in the information stored in its database.

In the vector space model for information retrieval, discussed in Section 2,
the database of documents is represented by an m � n term-document matrix
where m is the number of terms and n is the number of documents. This
matrix is typically less than 1% dense. Queries are represented as m-vectors,
and a matrix-vector product produces an n-vector of scores that is used to rank
the documents in relevance.

LSI is based on the vector space model, but the m � n term-document
matrix is replaced by a low-rank approximation generated by the singular value
decomposition (SVD). The SVD approximation is the sum of k rank-1 outer
products of m-vectors ui with n-vectors vi, weighted by scalars �i:

kX
i=1

�iuiv
T
i :

This approximation to the term-document matrix is optimal in the sense of
minimizing the distance between that matrix and all rank-k matrices. LSI has
performed well in both large and small tests; see, for example, Dumais [5, 6].
LSI is described in Section 3.

Thus far, only the singular value decomposition and its relatives, the ULV
and URV decompositions [3], have been used in LSI. We propose using a very
di�erent decomposition, originally developed for image compression by O'Leary
and Peleg [10]. In this decomposition, which we call the semi-discrete decompo-
sition (SDD), the matrix is approximated by summing outer products just as in
the SVD, but the m-vectors and n-vectors only have entries in the set f�1; 0; 1g.
This decomposition is constructed via a greedy algorithm and is not an optimal
decomposition; however, for equal query times, the SDD does as well as the SVD
method and requires approximately one-tenth the storage. The trade-o� is that
the SDD takes substantially longer to compute for sparse matrices, but this is
only a one-time expense. The SDD is discussed in Section 4, and computational
comparisons with the SVD are given in Section 5.

In many information retrieval settings, the document database is constantly
being updated. Much work has been done on updating the SVD approximation
to the term-document matrix [2, 9], but it can be as expensive as computing the
original SVD. E�cient algorithms for updating the SDD are given in Section 6.

2 The Vector Space Model

Both the SVD- and the SDD-based LSI models are built on the vector space
model, which we describe in this section.
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2.1 Creating the Term-Document Matrix

We begin with a collection of textual documents. We determine a list of key-
words or terms by

1. creating a list of all words that appear in the documents,

2. removing words void of semantic content such as \of" and \because" (us-
ing the stop word list of Frakes and Baeza-Yates [7]), and

3. further trimming the list by removing words that appear in only one doc-
ument.

The remaining words are the terms, which we number from 1 to m.
We then create an m� n term-document matrix

A = [aij];

where aij represents the weight of term i in document j.
The most natural choice of weights is to set aij = fij , the number of times

that term i appears in document j. Choosing the term weights properly is
critical to the success of the vector space model, so more elaborate schemes
have been devised.

A term weight has three components: local, global, and normalization. We
let

aij = gi tij dj;

where tij is the term component (based on information in the jth document
only), gi is the global component (based on information about the use of the
ith term throughout the collection), and dj is the normalization component,
specifying whether or not the columns are normalized. Various formulas for
each component are given in Tables 1 { 3. In these formulas, � represents the
signum function

�(t) =

8<
:

1 if t > 0;
0 if t = 0;

�1 if t < 0:

The weight formula is speci�ed by a three letter string whose letters represent
the local, global, and normalization components respectively; for example, using
weight lxn speci�es that

aij =
log(fij + 1)qPm

k=1 (log(fkj + 1))2
;

i.e., log local weights, no global weights, and column normalization.
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Symbol Formula for tij Brief Description Ref.

b �(fij) Binary [11]

t fij Term Frequency [11]

c :5 �(fij) + :5

�
fij

maxk fkj

�
Augmented Normalized
Term Frequency

[7, 11]

l log(fij + 1) Log [7]

Table 1: Local Term Weight Formulas

Symbol Formula for gi Brief Description Ref.

x 1 No change [11]

f log

 
nP

j �(fij)

!
Inverse Document Fre-
quency (IDF)

[11]

p log

 
n�

P
j �(fij)P

j �(fij)

!
Probabilistic Inverse [7, 11]

Table 2: Global Term Weight Formulas

Symbol Formula for dj Brief Description Ref.

x 1 No Change [11]

n
�Pm

i=1(gitij)
2
��1=2

Normal [11]

Table 3: Normalization Formulas
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2.2 Query Creation and Processing

A query is represented as an m-vector

q = [qi];

where qi represents the weight of term i in the query. In order to rank the
documents, we compute

s = qTA;

where the jth entry in s represents the score of document j. The documents
can then be ranked according to their scores, highest to lowest, for relevance to
the query.

We must also specify a term weighting for the query. This need not be the
same as the weighting for the documents. Here

qi = gi t̂i;

where gi is computed based on the frequencies of terms in the document collec-
tion, and t̂i is computed using the same formulas as for tij given in Table 1 with

fij replaced by f̂i, the frequency of term i in the query. Normalizing the query
vector has no e�ect on the document rankings, so we never do it. This means
the last component of the three-letter query weighting string is always x. So,
for example, the weighting cfx means

qi =

 
:5 �(f̂i) + :5

 
f̂i

maxk f̂k

!!
log

 
nPn

j=1 fij

!
:

A six-letter string, e.g. lxn.cfx, speci�es the document and query weights. We
will use various weighting in our LSI experiments.

3 LSI via the SVD

3.1 Approximating the Term-Document Matrix

In LSI, we can use a matrix approximation of the term-document matrix gen-
erated by the SVD. The SVD decomposes A into a set of n triplets of left (ui)
and right (vi) singular vectors and scalar singular values (�i):

A =
nX
i=1

�iuiv
T
i :

The vectors ui are mutually orthogonal and have norm one, the vectors vi are
mutually orthogonal with norm one, and the non-negative scalars �i are ordered
from greatest to least. The SVD is more commonly seen in matrix notation as

A =U�VT

5



where the columns of U are the left singular vectors, the columns of V are the
right singular vectors, and � is a diagonal matrix containing the singular values.

The SVD can be used to build a rank-k approximation to A by only using
the �rst k triplets; i.e.,

A � Ak �
kX
i=1

�iuiv
T
i :

In matrix form, this is written as

A � Ak � Uk�kV
T
k ;

where Uk and Vk consist of the �rst k columns of U and V respectively, and
�k is the leading k�k principal submatrix of �. It can be shown that Ak is the
best rank-k approximation to A in the Frobenius norm and in the Euclidean
norm [8].

3.2 Query Processing

We can process queries using our approximation for A:

s = qTA � qTAk

= qTUk�kV
T
k

= (qTUk�
�
k )(�

1��
k VT

k )

� ~qT ~A:

The scalar � controls the splitting of the �k matrix and has no e�ect unless we
re-normalize the columns of ~A. We will experiment with various choices for �
and re-normalization in Section 5.2.

The SVD has been used quite e�ectively for information retrieval, as docu-
mented in numerous reports. We recommend the original LSI paper [4], a paper
reporting the e�ectiveness of the LSI approach on the TREC-3 dataset [5], and
a more mathematical paper [2] for further information on the SVD for LSI.

4 LSI via a Semi-Discrete Decomposition

4.1 Approximating the Term-Document Matrix

The SVD produces the best rank-k approximation to a matrix, but generally,
even a small SVD approximation requires more storage than the original matrix
if the original matrix is sparse. To save storage and query time, we propose
replacing the SVD by the semi-discrete decomposition (SDD). We write the
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matrix approximation as a sum of triplets,

Ak =
kX
i=1

dixiy
T
i = XkDkY

T
k ;

where the m-vector xi and the n-vector yi have entries taken from the set
f�1; 0; 1g, the scalar di is any positive number, and the matrices Xk, Yk, and
Dk are formed from the vectors and scalars as before. This decomposition does
not reproduce A exactly, even if k = n, but the rank-k approximation can use
substantially less storage. The SDD requires only the storage of 2k(n + m)
values from the set f�1; 0; 1g and k scalars. An element of the set f�1; 0; 1g
can be expressed using log2 3 bits, although our implementation uses two bits
per element for simplicity. Furthermore, the SDD requires only single precision
scalars because it is a self-correcting algorithm; on the other hand, the SVD has
been computed in double precision accuracy for numerical stability. Assuming
that double precision scalars require 8 bytes and single precision scalars require
4, and packing 8 bits in a byte, we obtain the following storage comparison
between a rank-k SVD and SDD approximation to an m � n matrix:

Method Component Total Bytes
U km double precision numbers

SVD V kn double precision numbers 8k(m + n + 1)
� k double precision numbers
X km numbers from f�1; 0; 1g

SDD Y kn numbers from f�1; 0; 1g 4k + 1
4k(m + n)

D k single precision numbers

The SDD approximation is constructed via a greedy algorithm, converging
monotonically to A:

Algorithm. (O'Leary and Peleg [10]) Let kmax be the rank of the desired
approximation. This value can be determined ahead of time, or we can iterate
until we obtain a desired accuracy. Set k = 1. Set the residual matrixA(c) = A.
Choose tolerance; we use 0.01.

For k = 1; : : : ; kmax

1. Choose a non-zero vector y 2 f�1; 0; 1gn. We use a vector of
zeros with every hundredth element set to 1.

2. Inner iteration:

Set improvement= 1, change = 1.
While improvement � tolerance,
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(a) Hold the current y �xed and solve

min
x2f�1;0;1gm

d2<

kA(c) � dxyTkF :

(b) Hold the current x �xed and solve

min
y2f�1;0;1gn

d2<

kA(c) � dxyTkF :

(c) Evaluate the change:

new change = kA(c) � dxyTkF � kA(c)kF ;

improvement =
���new change � change

change

��� ;
change = new change:

End While.

3. Set xk = x; yk = y; dk = d. Set A(c) = A(c) � dkxky
T
k .

End For.

O'Leary and Peleg showed that the subproblems in steps (2a) and (2b) can be
solved optimally. Speci�cally, the subproblem in step (2a) is solved as follows:

1. Let

si = xi

nX
j=1

a
(c)
ij yj ;

where xi = �1 is chosen so that si � 0 for all i = 1; : : : ;m.

2. Order the si's so that si1 � si2 � � � � � sim .

3. For j = 1; : : : ;m, let

hj =
1

j

 
jX

k=1

sik

!2

:

4. Choose J such that hJ = maxjhj .

5. For k = J + 1; : : : ;m, set xik = 0.

6. Let

d =
mX
i=1

si=

0
@J nX

j=1

jyjj

1
A :
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The most expensive parts of the subproblem solution are the matrix-vector
multiply in step (1) and the sort in step (2). Because A is sparse, we never
form (the dense matrix) A(c) explicitly; instead, in step (1) we calculate Ay
and Xk�1Dk�1Y

T
k�1y. The calculation of Ay requires approximately the same

number of multiplies and additions as there are nonzeros inA, and the computa-
tion of Xk�1(Dk�1(Y

T
k�1y)) requires k multiplies and no more than k2n+km2

additions or subtractions. The m-long sort requires approximately O(m logm)
operations.

Note that step (6) does not need to be done when solving the �rst subproblem
since d is immediately re-calculated in the next subproblem. For the second
subproblem, we do a transpose multiplication in the �rst step and an n-long
sort in the second step. Thus, for each inner iteration, we have a multiplication
by A(c), a multiplication by (A(c))T, an m-long sort and an n-long sort. The
number of inner iterations is controlled by the tolerance threshold.

4.2 Query Processing

We evaluate queries in much the same way as we did for the SVD, by computing
s = ~qT ~A, with

~A = D1��
k YT

k ; ~q = D�
kX

T
k q:

Again, we generally re-normalize the columns of ~A.
For decompositions of equal rank, processing the query for the SDD requires

signi�cantly fewer 
oating-point operations than processing the query for the
SVD:

Operation SDD SVD
Additions k(m + n) k(m + n)

Multiplications k k(1 +m + n)

If we re-normalize the columns of ~A then each each method requires n additional
multiplies and storage of n additional 
oating point numbers.

5 Computational Comparison of the SDD- and

SVD-Based LSI Methods

In this section, we present computational results comparing the SDD- and SVD-
based LSI methods. All tests were run on a Sparc 20. Our code is in C, with
the SVD taken from SVDPACKC [1].

5.1 Methods of Comparison

We will compare the SDD- and SVD-based LSI methods using three standard
test sets. Each test set comes with a collection of documents, a collection of
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queries, and relevance judgments for each query. The relevance judgments are
lists of the documents relevant to each query. The test sets, each with over 1000
documents, are described in Table 4.

MEDLINE CRANFIELD CISI

Number of Documents: 1033 1399 1460
Number of Queries: 30 225 35
Number of (Indexing) Terms: 5526 4598 5574
Avg. No. of Terms/Document: 48 57 46
Avg. No. of Documents/Term: 9 17 12
% Nonzero Entries in Matrix: 0.87 1.24 0.82
Storage for Matrix (MB): 0.4 0.6 0.5
Avg. No of Terms/Query: 10 9 7
Avg. No. Relevant/Query: 23 8 50

Table 4: Characteristics of the test sets.

We will compare the systems by looking at mean average precision, a stan-
dard measure used by the information retrieval community.

When we evaluate a query, we return a ranked list of documents. Let ri
denote the number of relevant documents among the top i documents. The
precision for the top i documents, pi, is then de�ned as

pi =
ri
i
;

i.e., the proportion of the top i documents that are relevant.
The N -point (interpolated) average precision for a single query is de�ned as

1

N

N�1X
i=0

~p

�
i

N � 1

�
:

where
~p(x) = max

ri
rn
�x

pi:

Typically, 11-point interpolated average precision is used. Each of our data sets
has multiple queries, so we compare the mean average precision and the median
average precision, expressed as percentages. In other papers, average precision
generally refers to mean average precision.

5.2 Parameter Choices

We have two parameter choices to make for the SDD and SVD methods: the
choice of the splitting parameter �, and the choice of whether or not to re-
normalize the columns of ~A.
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SDD SVD
Re-Normalize? Re-Normalize?

� Yes No Yes No
0 62.1 61.2 65.1 64.2
0.5 62.6 61.2 64.7 64.2
-0.5 57.9 61.2 64.7 64.2
1.0 61.7 61.2 64.2 64.2
-1.0 48.6 61.2 62.3 64.2

Table 5: Mean average precision for the SDD and SVD methods with di�er-
ent parameter choices on the MEDLINE data set with k=100 and weighting
lxn.bpx.

We experimented with the SVD and SDD methods on the MEDLINE data
set using the weighting lxn.bpx. The results are summarized in Table 5. In all
further tests, we will use � = 0:5 with re-normalization for the SDD method
and � = 0 with re-normalization for the SVD method. We experimented using
other weighings and other data sets and con�rmed that these parameter choices
are always best or very close to it.

5.3 Comparisons

We tried the SDD and SVD methods with a number of weighings. We selected
these particular weighings for testing in LSI based on their good performance for
the vector space method on these datasets. We present mean average precision
results in Table 6 using a rank k = 100 approximation in each method; this
table also includes vector space (VS) results for comparison.

To continue our comparisons, we select a \best" weighting for each data set.
In Table 6 we have highlighted the \best" results for each data set in boldface
type. We will use only the corresponding weighings for the remainder of the
paper, although further experiments show similar results for other weighings.

In Figures 1 { 3, we compare the SVD and SDD methods on the data sets.
In Figure 1, we present results for the MEDLINE data. The upper right

graph plots the mean average precision vs. query time, and the upper left
graph plots the median average precision vs. query time. (The query time
is the total time required to execute all queries associated with the data set.)
Observe that the SDD method has maximal precision at a query time of 3.4
seconds, corresponding to k = 140, a mean average precision of 63.6 and a
median average precision of 71.4. The SVD method reaches its peak at 8.4
seconds, corresponding to k = 110, and mean and median average precisions of
65.5 and 71.7 respectively. The performance of the SDD method is on par with
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MEDLINE CRANFIELD CISI
Weight SDD SVD VS SDD SVD VS SDD SVD VS
lxn.bfx 62.6 64.6 54.6 35.7 40.4 45.5 15.6 16.6 17.7
lxn.bpx 62.6 65.1 54.6 35.6 39.9 45.5 15.2 16.9 17.8
lxn.lfx 61.2 64.0 53.7 35.8 40.3 45.6 16.0 16.6 18.2
lxn.lpx 61.3 64.3 53.8 35.5 40.1 45.7 15.5 16.9 18.3
lxn.tfx 60.9 63.5 53.2 35.7 40.2 45.6 16.3 16.9 18.4

lxn.tpx 60.9 63.8 53.4 35.4 39.9 45.6 15.7 17.0 18.3
cxx.bpx 57.9 59.6 53.6 32.9 38.9 43.4 17.1 17.9 17.5
cxn.bfx 58.4 62.5 53.6 33.1 38.7 44.1 17.8 16.5 17.4
cxn.bpx 58.4 63.0 53.6 32.6 38.7 43.4 18.1 17.6 17.5
cxn.tfx 56.8 61.5 52.5 33.3 38.8 43.9 17.1 16.9 18.2
cxn.tpx 57.0 61.8 52.6 32.7 38.2 43.3 17.1 17.7 18.2

Table 6: Mean average precision results for the SDD and SVD methods with
k=100.

the SVD method except for somewhat worse behavior on queries 26 and 27. We
have no explanation for the SDD behavior on these two queries.

In terms of storage, the SDD method is extremely economical. The middle
left graph plots mean average precision vs. decomposition size (in megabytes
(MB)), and the middle right graph plots median average precision vs. the
decomposition size. Note that a signi�cant amount of extra storage space is
required in the computation of the SVD; this is not re
ected in these numbers.
From these plots, we see that even a rank-30 SVD takes 50% more storage than
a rank-600 SDD, and each increment of 10 in rank adds approximately 0.5 MB
of additional storage to the SVD. The original data takes only 0.4 MB, but SVD
requires over 1.5 MB before it even begins to come close to what the SDD can
do in less than 0.2 MB.

The lower left graph illustrates the growth in required storage as the rank
of the decomposition grows. For a rank-600 approximation, the SVD requires
over 30 MB of storage while the SDD requires less than 1 MB.

It is interesting to see how good these methods are at approximating the ma-
trix. The lower right graph shows the Frobenius norm (F-norm) of the residual,
divided by the Frobenius norm of the original matrix, as a function of storage
(logarithmic scale). The SVD eventually forms a better approximation to the
term-document matrix, making it behave more like the vector space method.
This is not necessarily desirable.

The CRANFIELD dataset is troublesome for LSI techniques; they do not
do as well as the vector space method. From the upper two graphs in Figure 2
we see that, for equal query times, the SDD method does as well as the SVD
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Figure 1: A comparison of the SVD (*) and SDD (o) on the MEDLINE data
set. We plot 60 data points for each graph, corresponding to k = 10; 20; : : :; 600.
The dotted lines show the corresponding data for the vector space method.
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Figure 2: A comparison of the SVD (*) and SDD (o) on the CRANFIELD data
set. We plot 40 data points for each graph, corresponding to k = 10; 20; : : :; 400.
The dotted lines show the corresponding data for the vector space method.
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Figure 3: A comparison of the SVD (*) and SDD (o) on the CISI data set. We
plot 49 data points for each graph, corresponding to k = 10; 20; : : :; 490. The
dotted lines show the corresponding data for the vector space method.
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method. The other graphs show that, as in the MEDLINE test, the SDD is
muchmore economical in terms of storage and achieves a somewhat less accurate
approximation of the matrix.

In Figure 3 we compare the SVD and SDD methods on the CISI data. The
SDD method is better overall than the SVD method in terms of query time, and
its mean average precision peaks higher than the SVD method | 19.1 versus
18.3. Again, the storage di�erences are dramatic.

MEDLINE CRANFIELD CISI
SDD SVD SDD SVD SDD SVD

Query Time (Sec) 3.4 3.6 63.8 77.3 4.3 4.4
Dimension (k) 140 20 390 210 140 30
Mean Avg Prec 63.6 51.8 44.9 44.5 19.1 15.2
Median Avg Prec 71.4 55.7 37.3 37.4 19.4 12.2

Decomp Storage (MB) 0.2 1.1 0.6 10.1 0.2 1.7
Decomp Time (Sec) 245.4 4.7 1313.8 91.5 279.0 13.0
Rel. F-Norm of Resid 0.85 0.90 0.63 0.59 0.85 0.89

Table 7: Comparison of the SDD and SVD methods at the query time where
the SDD has the highest mean average precision.

Table 7 compares the two methods for the query time at which the SDD
method peaks on mean average precision. On all three data sets, the SDD
has higher mean and median precisions than the SVD. Since all the methods
have similar performance in terms of the mean and median average precision,
observe that the trade-o� is in the decomposition computation time and the
decomposition storage requirement; the SVD is much faster to compute, but
the SDD is much smaller.

The results on the three data sets can be summarized as follows: the SDD
method is competitive with the SVD method for information retrieval. For equal
query times, the SDD method generally has a better mean and median average
precision. The SDD requires much less storage and may be the only choice when
storage is at a premium. The only disadvantage is the long time required for
the initial decomposition, but this is generally a one-time-only expense. Further
research should be done on improving the decomposition algorithm.

6 Modifying the SDD when the Document Col-

lection Changes

Thus far we have discussed the usefulness of the SDD on a �xed document
collection. In practice, it is common for the document collection to be dynamic:
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new documents are added, and old documents are removed. Thus, the list
of terms might also change. In this section, we will focus on the problem of
modifying a SDD decomposition when the document collection changes.

SVD-updating has been studied by O'Brien [9]. He reports that updating
the SVD takes almost as much time as re-computing it, but that it requires
less memory. His methods are similar to what we do in Method 1 in the next
section.

6.1 Adding or Deleting Documents or Terms

Suppose that we are adding new documents to the collection. For now we will
assume that this does not a�ect the set of terms and that no global weighting
was used on the matrix. Let

A =
�
A(1) A(2)

�
represent the updated collection of documents where A(1) is the original matrix
and A(2) is the matrix representing the new documents and is weighted in the
same way as A(1).

Assume that X(1), D(1), and Y(1) are the components of the SDD decom-
position for A(1). We propose two methods for updating this decomposition.

Method 1: Append rows to Y(1). The simplest update method is to ap-
pend new rows to Y(1). In other words, keeping X(1), D(1), and Y(1) �xed, we
wish to compute Y(2) such that

A � X(1)D(1)

�
Y(1)

Y(2)

�T
:

Let kmax be the rank of the decomposition desired; generally this is the same
as the rank of the original decomposition. For each value of k = 1; : : : ; kmax, we
must �nd the vector y that solves

minkA(c) � dxyTkF ;

where A(c) = A(2) � X
(1)
k�1D

(1)
k�1(Y

(2)
k�1)

T , x is the kth column of X(1), and d

is the kth diagonal element of D(1). We never access A(1), and this may be
useful in some situations. The solution y becomes the kth column of Y(2).
The procedure to optimally solve this problem is the same as that used on the
subproblem discussed in Section 3.1, except that here d is �xed, so the de�nition
of hj in the third step is changed to

hj = 2d

jX
k=1

sik � jd2
mX
k=1

jxkj:
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Method 2: Re-Compute D and Y. Another possible method is to com-
pletely re-compute D and Y, keeping X(1) �xed.

Let kmax be the rank of the decomposition desired. For each k = 1; : : : ; kmax,
we must �nd the d and y that solve

minkA(c) � dxyTkF ;

where A(c) = A � X
(1)
k�1Dk�1Y

T
k�1 and x is the kth column of X(1). The

solutions d and y become the kth diagonal element of D and the kth column of
Y respectively.

Neither method has any inner iterations, and so both are fast. We tried
each update method on a collection of tests derived from the MEDLINE data.
We split the MEDLINE document collection into two groups. We did a decom-
position on the �rst group of documents with k = 100, then added the second
group of documents to the collection, and updated the decomposition via each
of the two update methods. The results are summarized in Table 8. The second
method is better, as should be expected since we are allowing more to change.
For the second method, the decrease in mean average precision is not very great
when we add only a small number of documents. As the proportion of new
documents to old documents grows, however, performance worsens.

Method 1 Method 2
Documents Decomp Time Mean Time Mean
Old New Time (Sec) (Sec) Avg Prec (Sec) Avg Prec
929 104 134.5 5.0 59.72 5.6 61.48
826 207 129.5 4.9 55.29 5.4 60.06
723 310 125.9 5.1 53.49 5.5 60.84
619 414 113.5 5.0 46.47 5.5 56.98
516 517 107.9 5.0 37.77 5.5 55.04
413 620 95.5 5.3 35.96 5.5 54.51
309 724 83.6 5.1 19.33 5.5 46.56
206 827 64.3 5.1 21.25 5.4 49.36
103 930 63.0 5.2 11.17 5.2 39.91

Table 8: Comparison of two update methods on the MEDLINE data set with
k = 100.

If we want to incorporate additional terms, we would be adding additional
rows to A. The two update methods discussed above can also be used in this
situation. If we want to add both new terms and new documents, we can add
one and then the other.

If we wish to delete terms or documents, we simply delete the corresponding
rows in the X and Y matrices.
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6.2 Iterative Improvement of the Decomposition

If we have an existing decomposition, perhaps resulting from adding and/or
deleting documents and/or terms, we may wish to improve on this decomposi-
tion without actually re-computing it. We consider two approaches.

Method 1: Partial Re-Computation In order to improve on this decom-
position, we could reduce its rank by deleting 10% of the vectors and then re-
compute them using our original algorithm. This method's main disadvantage
is that it can be expensive in time. If performed on the original decomposition,
it has no e�ect.

Method 2: Fix and Compute. This method is derived from the second
update method. We �x the current Y and re-compute X and D; we then �x
the current X and re-compute the Y and D. This method is very fast because
there are no inner iterations. This can be repeated to further improve the
results. If applied to an original decomposition, it would change it.

We took the decompositions resulting from the second update method in
the last subsection and applied the improvement methods to them. We have a
rank-100 decomposition. For the �rst improvement method, we re-computed 10
dimensions. For the second improvement method, we applied the method once.
The results are summarized in Table 9. If we have added only a few documents,
the �rst method improves the precision while the second method worsens it.
On the other hand, if we have added many documents, then the second method
is much better. The �rst method could be improved by re-computing more
dimensions, but this would quickly become too expensive. The second method
greatly improves poor decompositions and is relatively inexpensive. It can be
applied repeatedly to further improve the decomposition.

7 Conclusions

We have introduced a semi-discrete matrix decomposition for use in LSI. For
equal query times, the SDD-LSI method performs as well as the original SVD-
LSI method. The advantage of the SDD method is that the decomposition takes
very little storage, and the disadvantage is that the initial time to form the
decomposition is large. Since decomposition is a one-time expense, we believe
that the SDD-LSI algorithm will be quite useful in application.

We have also introduced methods to dynamically change the SDD decom-
position if the document collection changes and methods to improve the decom-
position if it is found to be inadequate.
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Method 1 Method 2
Documents Prev Mean Time Mean Time Mean
Old New Avg Prec (Sec) Avg Prec (Sec) Avg Prec
929 104 61.48 18.0 60.83 13.8 61.24
826 207 60.06 19.3 59.81 13.9 61.55
723 310 60.84 20.8 60.76 13.7 61.92
619 414 56.98 21.5 58.60 14.4 60.49
516 517 55.04 20.4 56.76 13.5 58.19
413 620 54.51 22.9 56.04 13.7 59.41
309 724 46.56 20.1 47.90 13.4 55.03
206 827 49.36 20.8 53.44 13.5 56.20
103 930 39.91 18.9 45.36 13.3 52.08

Table 9: Comparison of two improvement methods on the MEDLINE data set
with k = 100.
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