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Abstract

Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factor-
ization has found application in many different domains. The CP model is typically
fit using a least squares objective function, which is a maximum likelihood estimate
under the assumption of i.i.d. Gaussian noise. We demonstrate that this loss function
can actually be highly sensitive to non-Gaussian noise. Therefore, we propose a loss
function based on the 1-norm because it can accommodate both Gaussian and grossly
non-Gaussian perturbations. We also present an alternating majorization-minimization
algorithm for fitting a CP model using our proposed loss function.

1 Introduction

The CANDECOMP/PARAFAC (CP) tensor factorization can be considered a higher-order generalization
of the matrix singular value decomposition [4, 7] and has many applications. The canonical fit function
for the CP tensor factorization is based on the Frobenius norm, meaning that it is a maximum likelihood
estimate (MLE) under the assumption of additive i.i.d. Gaussian perturbations. It turns out, however, that
this loss function can be very sensitive to violations in the Gaussian assumption. However, many other
types of noise are relevant for CP models. For example, in fMRI neuroimaging studies, movement by the
subject can lead to sparse high-intensity changes that are easily confused with brain activity [6]. Like-
wise, in foreground/background separation problems in video surveillance, a subject walking across the
field of view represents another instance of a sparse high intensity change [13]. In both examples, there
is a relatively large perturbation in magnitude that affects only a relatively small fraction of data points;
we call this artifact noise. These scenarios are particularly challenging because the perturbed values are
on the same scale as normal values (i.e., true brain activity signals and background pixel intensities).
Consequently, there is a need to explore factorization methods that are robust against violations in the
Gaussian assumption. In this paper, we consider a loss based on the 1-norm which is known to be robust
or insensitive to gross non-Gaussian perturbations [8].

Vorobyov et al. previously described two ways of solving the least 1-norm CP factorization problem
based on a linear programming and weighted median filtering [14]. Our method differs in that we use
a majorization-minimization (MM) strategy [9]. Like [14] our method performs block minimization.
An advantage of our approach is that each block minimization can be split up into many small and
independent optimization problems which may scale more favorably with a tensor’s size.
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Throughout, we use the following definitions and conventions. All vectors are column vectors. The
transpose of the ith row of a matrix A is denoted by ai. The order of a tensor is the number of dimensions,
also known as ways or modes. Fibers are the higher-order analogue of matrix rows and columns. A fiber
is defined by fixing every index but one. A matrix column is a mode-1 fiber and a matrix row is a mode-2
fiber. The mode-n matricization of a tensor X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the
mode-n fibers to be the columns of the resulting matrix.

The rest of this paper is organized as follows. The robust iterative algorithm is derived in Section 2. In
Section 3 we compare CPAL1 and the standard CP factorizations by alternating least squares (CPALS)
in the presence of non-Gaussian perturbations on simulated data. Concluding remarks are given in Sec-
tion 4.

2 Majorization-minimization for tensor factorization

MM algorithms have been applied to factorization problems previously [12, 3, 5]. The idea is to convert
a hard optimization problem (e.g., non-convex, non-differentiable) into a series of simpler ones (e.g.,
smooth convex), which are easier to minimize than the original. To do so, we use majorization functions,
i.e., h majorizes g at x ∈ Rn if h(u) ≥ g(u) for all u ∈ Rn and h(x) = g(x).

Given a procedure for constructing a majorization, we can define the MM algorithm to find a minimizer
of a function g as follows. Let x(k) denotes the kth iterate. (1) Find a majorization h(·|x(k)) of g at
x(k). (2) Set x(k+1) = argminx h(x|x(k)). (3) Repeat until convergence. This algorithm always takes
non-increasing steps with respect to g. Moreover, sufficient conditions for the MM algorithm to converge
to a stationary point are well known [11]. Specifically, the MM iterates will converge to a stationary point
of g if g is continuously differentiable, coercive in the sense that all its level sets must be compact, and
all its stationary points are isolated; and the function h(x|y) is jointly twice continuously differentiable
in (x,y) and is strictly convex in x with y fixed.

2.1 Solving the `1 regression problem by an MM algorithm

We now derive an appropriate majorization function for approximate `1 regression; this is subsequently
used for our robust tensor factorization. The unregularized majorization can be found in [11]. Given
a vector y ∈ RI and a matrix M ∈ RI×J , we search for a vector u ∈ RJ that minimizes the loss
L(u) =

∑
i|ri(u)| where ri(u) = yi −mT

i u. Note that L(u) is not smooth and may not be strictly
convex if M is not full rank. Therefore, we instead consider the following smoothed and regularized
version to L(u):

Lε,µ(u) =

I∑
i=1

√
ri(u)2 + ε+

µ

2
‖u‖2, (1)

where ε and µ are small positive numbers. In this case, Lε,µ(u) at ũ ∈ RJ is majorized by

hε,µ(u|ũ) =
I∑
i=1

{√
ri(ũ)2 + ε+

ri(u)
2 − ri(ũ)2

2
√
ri(ũ)2 + ε

}
+
µ

2
‖u‖2. (2)

Both the loss Lε,µ and its majorization hε,µ meet the sufficient conditions that guarantee convergence of
the MM algorithm to a stationary point of Lε,µ. Since Lε,µ is strictly convex and coercive, it has exactly
one stationary point. Thus, the MM algorithm converges to the global minimum of Lε,µ. After some
simplification, the iterate mapping can be expressed as

u(m+1) = argmin
u

{
I∑
i=1

ri(u)
2√

ri(u(m))2 + ε
+
µ

2
‖u‖2

}
. (3)

Let W(m) ∈ RI×I be the diagonal matrix with (W(m))ii = (ri(u
(m))2+ε)−1/2. Then the minimization

problem (3) is a regularized weighted least squares problem with a unique solution, i.e.,

u(m+1) = argmin
u

{
(y −Mu)TW(m)(y −Mu) +

µ

2
‖u‖2

}
= (MTW(m)M+ µI)−1MTW(m)y.

(4)

2



2.2 Tensor factorization using `1 regression

We now derive CPAL1 for a 3-way tensor X of size I1 × I2 × I3 (it is straightforward to generalize the
algorithm to tensors of arbitrary size). To perform a rank-R factorization we minimize Lε,µ(A,B,C)
which is the regularized approximate 1-norm of the difference between X and its rank-R approximation,
where A ∈ RI1×R,B ∈ RI2×R,C ∈ RI3×R:

Lε,µ(A,B,C) =
∑
i1,i2,i3

√√√√(xi1i2i3 − R∑
r=1

ai1rbi2rci3r

)2

+ ε+
µ

2

(
‖A‖2F + ‖B‖2F + ‖C‖2F

)
.

In a round-robin fashion, we repeatedly update one factor matrix while holding the other two fixed.
Note that the mode-1 matricization of the rank-R approximation is A(C � B)T where � denotes the
Khatri-Rao product [10]. Then the subproblem of updating A for a fixed B and C is

min
A

I1∑
i=1

I2I3∑
j=1

√((
X(1) −A(C�B)T

)
ij

)2
+ ε+

µ

2
‖A‖2F . (5)

This minimization problem is separable in the rows of A, and the optimization problem for a given row
is an `1 regression problem. Thus, we can apply the update rule (4) with y equal to the ith row of X(1)

and M = C�B. The other two subproblems are solved analogously.

3 Simulation Experiment

We compare the results of CPAL1 with CPALS implemented in the Tensor Toolbox [2] in the presence
of Gaussian and artifact noise. We created 3-way tensors, X′ ∈ R50×50×50 of rank-5 as follows. We
first generated random factor matrices A,B,C ∈ R50×5 where the matrix elements were the absolute
values of i.i.d. draws from a standard Gaussian. The ijkth entry of the noise free tensor X was then
set to be

∑R
r=1 ai1rbi2rci3r. Then to each X we added dense Gaussian noise and artifact outliers. All

random variables we describe were independently drawn. We generated an artifact tensor P as follows.
A fraction η of the tensor entries was selected randomly. We then assigned to each of the selected entries
a value drawn from a Gamma distribution with shape parameter 50 and scale parameter 1/50. All other
entries were set to 0. For the dense Gaussian noise tensor Q, the entries qijk were i.i.d. draws from a
standard Gaussian. The tensor X′ was obtained by adding the noise and artifact tensors to X :

X′ = X+ γ
‖X‖F
‖P‖F

P+ 0.1
‖X‖F
‖Q‖F

Q

for η = 0.1, 0.2 and γ = 0.5, 1.0, 1.5 and 2.0. For all combinations of η and γ the scaled values of qijk
were less than the largest value of X.

For every pair (η, γ) we performed 100 rank-5 factorizations under the two methods. For CPAL1 com-
putations we set ε = 10−10 and µ = 10−8. Initial points for all tests were generated using the n-mode
singular vectors of the tensor (i.e., the nvecs command in the Tensor Toolbox). To assess the goodness
of a computed factorization we calculated the factor match score (FMS) between the estimated and true
factors [1]. The FMS ranges between 0 and 1; an FMS of 1 corresponds to a perfect recovery of the
original factors.

Figure 1a shows boxplots of the FMS under both methods. The scores for CPALS decreased as the
contribution of non-Gaussian noise increased. In contrast regardless of the noise distributions applied
CPAL1 tended to recover the true factorization with the exception of occasionally finding local minima,

Figure 1b compares one column of one recovered factor matrix when η = 0.2 and γ = 2 for the two
methods. In this instance the CPALS factorization has some trouble recovering the true factor column. In
this example the FMS was 0.91 and 0.64 for CPAL1 and CPALS respectively. The median CPALS FMS
was about 0.7, so the example shown is somewhat typical. The factorization is not terrible qualitatively,
but the errors in the Factor 2 estimates do fail to capture details that CPAL1 solution does.

4 Conclusion

We derived a robust tensor factorization algorithm based on an approximate 1-norm loss. In compar-
isons with methods using an LP solver we found that our method performed slightly faster on tensors
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(a) The FMS distribution under different combinations of η and γ.

Variables

C
oe

ffi
ci

en
ts

0.0

0.1

0.2

0.3

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

10 20 30 40 50

Method
● True

CPAL1

CPALS

(b) A comparison of a single recovered factor column for a replicate when η = 0.2 and γ = 2. Here
the FMS was 0.91 and 0.64 for CPAL1 and CPALS respectively. Factor columns were normalized for
comparison.

Figure 1: Panel 1a shows on average that CPALS factorizations are sensitive to artifact noise. Panel 1b
provides a close up comparison of the differences between the two methods for single recovered column
in an instance where CPALS is less accurate.

of similar size to those factored in the simulation experiments of this paper (not shown). We suspect
the performance gap may widen depending on the size of the tensor. Indeed, to factor an arbitrary ten-
sor of size I1 × · · · × IN the LP update for the ith factor matrix would be an optimization problem
over 2

∏
n 6=i In + R parameters. In contrast, the ith factor matrix update consists of Ii independent `1

minimizations over R parameters. Moreover, the independence of these minimizations present speed-up
opportunities through parallelization.

Our simulations demonstrated that there are non-Gaussian noise scenarios in which the quality of CPALS
solutions suffer while those of CPAL1 tend to be insensitive to the presence of non-Gaussian noise. In
simulation studies not shown we have seen that not all non-Gaussian perturbations cause noticeable
degradation in the CPALS factorization. Conversely, there are situations when CPAL1 struggles as much
as CPALS in the presence of artifact noise, e.g. when the data tensor is sparse as well. We conjecture
that CPAL1 is most suited to handle artifact noise when the data tensor is dense. Finding an alternative
to the 1-norm loss for sparse data with non-Gaussian noise is a direction for future research.
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