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STATIONARITY RESULTS FOR GENERATING SET SEARCH FOR
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Abstract. We present a new generating set search (GSS) approach for minimizing functions
subject to linear constraints. GSS is a class of direct search optimization methods that includes
generalized pattern search. One of our main contributions in this paper is a new condition to
define the set of conforming search directions that admits several computational advantages. For
continuously differentiable functions we also derive a bound relating a measure of stationarity, which
is equivalent to the norm of the gradient of the objective in the unconstrained case, and a parameter
used by GSS algorithms to control the lengths of the steps. With the additional assumption that
the derivative is Lipschitz, we obtain a big-O bound. As a consequence of this relationship, we
obtain subsequence convergence to a KKT point, even though GSS algorithms lack explicit gradient
information. Numerical results indicate that the bound provides a reasonable estimate of stationarity.
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1. Introduction. We consider a class of direct search methods called generating
set search (GSS) [15] which encompasses methods such as generalized pattern search
[33, 18, 19] and certain classes of derivative-free optimization methods [21, 22, 23, 24].
The problem of interest is the linearly constrained minimization problem:

minimize f(x)

subject to Ax ≤ b.
(1.1)

Here f : Rn → R, A is an m × n matrix, and b is a vector in Rm. Both A and b are
assumed to be explicitly available. No assumption of nondegeneracy of the constraints
is made. Let Ω denote the feasible region

Ω = { x | Ax ≤ b } .
We assume that the objective f is continuously differentiable on Ω but that the
gradient is not computationally available because no procedure exists for computing
the gradient and it cannot be approximated accurately.
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(a) Initial pattern
for k = 0; k ∈ S.

Ω

(b) Move west for
k = 1; k ∈ U .

Ω

(c) Reduce step for
k = 2; k ∈ S.

Ω

(d) Move north for
k = 3; k ∈ U .

Ω

(e) Reduce step for
k = 4; k ∈ S.

Ω

(f) Move west for
k = 5; k ∈ U .

Fig. 1.1. Coordinate search with exact penalization applied to the modified Broyden tridiagonal
function with bound constraints.

1.1. An illustrative example. We illustrate an instance of a GSS method in
Figure 1.1. We consider coordinate search applied to the two-dimensional modified
Broyden tridiagonal function [4, 26], a standard test problem, with the addition of
bounds on the variables. Level curves of the function are shown in the background,
and the feasible region is the box labeled Ω. The current iterate xk is indicated by
a circle; this is the point with the lowest value of f found so far, also known as
the best point. If there are no constraints, a coordinate search method evaluates the
function at the 2n trial points defined by taking a step of a specified length from
xk along the positive and negative coordinate directions, i.e., the search directions.
The iterates must remain feasible with respect to the bound constraints present in
this problem, which means that infeasible trial points are not considered. Terminal
crosses show infeasible trial points; solid squares indicate feasible trial points. The
lighter versions given in (b)–(f) indicate the search directions and trial points from
the previous iteration.

To establish notation and give context for the discussion that follows, we give
an outline of a GSS method. Details are developed throughout the paper; complete
statements of the algorithms can be found in section 5.

Let x0 ∈ Ω be the initial iterate, and let Δ0 be the initial choice for the step-
length control parameter with Δ0 > Δtol > 0, where Δtol serves as a measure for
termination. The search proceeds for iterations k = 0, 1, 2, . . . until Δk < Δtol.

The first step in each iteration is to select a set of search directions. The number
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of search directions is denoted by pk and the set of search directions by

Dk = {d(1)
k , . . . , d

(pk)
k }.

The second step in each iteration is to construct feasible trial points of the form

xk + Δ̃
(i)
k d

(i)
k , i ∈ {1, . . . , pk},

with Δ̃
(i)
k ∈ [0,Δk] chosen to ensure feasibility. These trial points are where the

objective function may be evaluated in the search for a new best point to replace xk.
The third step is to determine whether the iteration is successful or unsuccessful

and correspondingly update x and Δ. If one of the trial points reduces the objective
function value by an acceptable amount, then that trial point becomes the new iterate
xk+1. The step-length control parameter may either be increased or, more usually,
left unchanged so that Δk+1 = Δk. In this case the iteration is deemed successful and
k is assigned to the set of successful iterates denoted by S. Otherwise, none of the
trial points improves the value of the objective function, so the step Δk is reduced,
e.g., Δk+1 = 1

2Δk, and the next iterate is unchanged, i.e., xk+1 = xk. In this case the
iteration is deemed unsuccessful and k is assigned to the set of unsuccessful iterates
denoted by U .

1.2. Goals of this paper. A primary contribution of this paper is a new con-
dition on the set of search directions Dk that is flexible but also sufficient to ensure
desirable convergence properties of the algorithm. Key to our new results is the way
in which the classification of constraints as being nearly binding is tied to Δk, the
step-length control parameter.

The following measure of stationarity, introduced in [5], is central to our analysis:
for x ∈ Ω,

χ(x) ≡ max
x+w∈Ω
‖w ‖≤1

−∇f(x)Tw.

As discussed in [6], χ(x) is a continuous function on Ω. Furthermore, χ(x) = 0
for x ∈ Ω if and only if x is a Karush–Kuhn–Tucker (KKT) point of the linearly
constrained problem.

In Theorem 6.4, under certain assumptions, we show that at unsuccessful itera-
tions there is a big-O relationship between the step-length control parameter and the
measure of stationarity:

χ(xk) = O(Δk) for k ∈ U .(1.2)

This means that as Δk is reduced, the upper bound on the value of the measure
of stationarity is also reduced. Relationship (1.2) is analogous to the unconstrained
minimization result (see [8, section 3] or [15, section 3.6]):

‖∇f(xk) ‖ = O(Δk) for k ∈ U .(1.3)

Results (1.2) and (1.3) support using the magnitude of Δk as a test for termination.
In section 7 we give numerical illustrations of relationship (1.2).

Another consequence of (1.2) is that it leads directly to a global convergence result
(Theorem 6.5) showing that a subsequence of the iterates converges to a KKT point:

lim inf
k→∞

χ(xk) = 0.(1.4)

The latter follows immediately from (1.2) once the result lim infk→∞ Δk = 0 from
[33] is invoked, thus further simplifying prior global convergence analyses.
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1.3. Related work. The GSS methods we propose for solving linearly con-
strained problems are feasible-point methods; i.e., they require all iterates to be feasi-
ble. They also share many features with classical feasible directions methods that rely
on derivatives [2, 35, 36], especially in the way in which they handle the proximity of
the current iterate to the boundary of the feasible region.

Most prior related work has used similar mechanisms for identifying the set of
nearly binding linear constraints [25, 34, 19, 1, 30] and [24, Algorithm 2]. Constraints
were identified as being nearly binding by considering either the Euclidean distance
from the current iterate to the constraint faces [25, 19, 24, 1] or the magnitude of the
constraint residual | aTi x− bi | at the current iterate [34, 30]. A constraint was treated
as binding if one of the preceding measures fell below some fixed threshold.

The convergence properties of GSS algorithms rely on the presence at each itera-
tion of a theoretically necessary set of search directions, which we call core directions.
In the work just cited ([25, 34, 19, 1, 30] and [24, Algorithm 2]), the core directions are
all the generators for a set of cones. There are situations where the resulting number
of search directions is quite large. Since Δk can be reduced only at the conclusion of
an unsuccessful iteration, and each unsuccessful iteration requires the evaluation of
the function at the trial points defined by core directions, there is incentive to try and
keep the cardinality of the set of core directions small when the cost of computing f
at a feasible point is appreciable.

Algorithm 1 of [24] addresses this concern. Its core directions are the generators of
a single cone. However, the only allowable search directions are the core directions—
the set of search directions cannot be augmented.

The approach we advocate here is a compromise. Our set of core directions is
smaller than in [25, 34, 19, 1, 30] and [24, Algorithm 2], but the choice of search
directions is more flexible than Algorithm 1 of [24]. The core set need only contain
generators for a single cone, but accommodates additional search directions. As re-
ported in [17], the computational advantages of this compromise are appreciable in
terms of reducing the number of search directions per iteration, reducing the total
number of iterations, and reducing the total number of function evaluations.

Another focus of the work reported here is on establishing (1.2) and a related
result regarding the projection of the direction of steepest descent onto the polar
of the cone defined by the working set of constraints. Proposition 7.1 in [19] also
established a relationship between Δk and a different measure of stationarity. The
quantity

q(x) ≡ PΩ (x−∇f(x)) − x,(1.5)

where PΩ denotes the projection onto Ω, is a continuous function of x with the prop-
erty that q(x) = 0 for x ∈ Ω if and only if x is a KKT point. In [19, Proposition 7.1]
it is shown that

‖ q(xk) ‖ = O(
√

Δk) for k ∈ U ,(1.6)

a result that is neither as satisfying nor as useful as that in (1.2).
Continuing along the lines we began in [15], here we incorporate the sufficient

decrease step acceptance criterion from [23, 22, 24], while also preserving a version of
the algorithm that requires only simple decrease, as in the work in [19, 1, 30]. The
sufficient decrease condition simplifies the analysis. More importantly, the sufficient
decrease condition gives us greater flexibility in how we maintain feasibility in the
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presence of linear constraints. In particular, using a sufficient decrease acceptance
criterion makes steps onto the boundary straightforward.

As mentioned in section 1.2, given (1.2) it is straightforward to prove convergence
of a subsequence to a KKT point. The approach to convergence analysis in [1, 30] takes
a different tack by focusing on the directional derivatives along the search directions
and considering whether limit points of the sequence of iterates are KKT points. This
allows a relaxation of the smoothness assumptions on f . If f is not assumed to be
continuously differentiable, but is only assumed to be strictly differentiable at limit
points of the sequence of iterates, the results in [1, 30] show that those limit points
are KKT points. However, subsequence convergence to KKT points in the nonsmooth
case is not guaranteed by the results in [1, 30] and, in fact, may not be realized [15].

1.4. Organization. The paper is organized as follows. In section 2, we describe
the conditions on the set of core directions for GSS methods applied to problems
with linear constraints. As we saw in Figure 1.1, GSS algorithms may generate trial
points that are infeasible, so in section 3 we describe how feasibility is maintained. In
section 4 we discuss the globalization strategies. Formal statements of GSS algorithms
for solving linearly constrained problems are given in section 5. We present two general
algorithms. The first (Algorithm 5.1) uses a sufficient decrease condition as in [22, 24].
The second (Algorithm 5.2) uses a simple decrease condition as in [18, 19]. Results
showing the stationarity properties of these algorithms are derived in section 6. In
section 7 we discuss what the analysis reveals about using Δk to test for stationarity
and demonstrate its effectiveness on two test problems. In section 8, we summarize
the results and their importance. Appendix A contains a discussion of χ(x) and its
use as a measure of stationarity. Appendix B contains geometric results on cones and
polyhedra.

2. Search directions. GSS methods for linearly constrained optimization need
to choose Dk, the set of search directions, at each iteration. In this section, we
describe the conditions we place on Dk to guarantee (1.2), and thus (1.4). Since
GSS methods do not use gradient information, they cannot directly identify descent
directions. Instead, the set Dk must include enough search directions to guarantee
that at least one of them is a descent direction and, moreover, allows a sufficiently long
step within the feasible region if xk is not a KKT point. To describe the conditions
on the sets of search directions, we start in section 2.1 by reviewing some standard
concepts regarding finitely generated cones. Then, in section 2.2, we show how to
use the constraints Ax ≤ b to define cones that mirror the geometry of the boundary
of the polyhedron Ω near the current iterate xk. Finally, in section 2.3, we detail
the conditions placed on the set Dk to ensure that, for every iteration of any GSS
algorithm, there exists at least one direction along which it is possible to take a step
of sufficient length while remaining inside Ω.

2.1. Cones and generators. A cone K is a set that is closed under nonnegative
scalar multiplication, i.e., K is a cone if x ∈ K implies αx ∈ K for all α ≥ 0. The
polar of a cone K, denoted K◦, is defined by

K◦ =
{
v | wT v ≤ 0 for all w ∈ K

}
and is itself a cone. Given a convex cone K and any vector v, there is a unique closest
point of K to v, the projection of v onto K, which we denote by vK . Given a vector
v and a convex cone K, any vector v can be written as v = vK + vK◦ and vTKvK◦ = 0
[27, 12].
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A set of vectors G generates a cone K if K is the set of all nonnegative linear
combinations of elements of G. A cone K is finitely generated if it can be generated
by a finite set of vectors. For any finite set of vectors G, we define

κ(G) = inf
v∈Rn

vK �=0

max
d∈G

vT d

‖ vK ‖ ‖ d ‖ , where K is the cone generated by G.(2.1)

This is a generalization of the quantity given in [15, (3.10)], where G generates Rn.
Note that the value κ(G) is a property of the set G—not of the cone K. See Proposition
10.3 in [19] for a proof of the following result.

Proposition 2.1. If G 	= {0}, then κ(G) > 0.
A special case occurs if G generates Rn. In this case, a set of generators is a

positive spanning set [7]. Thus a positive spanning set is like a linear spanning set
but with the additional requirement that all the coefficients be nonnegative. One
particular choice of generating set for Rn is the set of the positive and negative unit
coordinate vectors

{e1, e2, . . . , en,−e1,−e2, . . . ,−en},
which is the set of search directions used for the illustration of coordinate search in
Figure 1.1.

2.2. Tangent and normal cones. Let aTi be the ith row of the constraint
matrix A and let

Ci =
{
y | aTi y = bi

}
denote the set where the ith constraint is binding. The set of indices for the binding
constraints at x is I(x) = { i | x ∈ Ci }. The normal cone at a point x, denoted by
N(x), is the cone generated by the binding constraints, i.e., the cone generated by the
set { ai | i ∈ I(x) } ∪ {0}. The presence of {0} means that N(x) = {0} if there are
no binding constraints. The tangent cone, denoted by T (x), is the polar of the normal
cone. Further discussion of the tangent and polar cones in the context of optimization
can be found, for instance, in [31, 12, 13, 29].

In our case, we are not only interested in the binding constraints, but also in the
nearby constraints. Given x ∈ Ω, the indices of the ε-binding constraints are given by

I(x, ε) = { i | dist(x, Ci) ≤ ε } .(2.2)

The vectors ai for i ∈ I(x, ε) are the outward-pointing normals to the faces of the
boundary of Ω within distance ε of x. The idea of using ε-binding constraints is
identical to one sometimes used in gradient-based feasible directions methods, e.g.,
[2, section 2.5].

Given x ∈ Ω, we define the ε-normal cone N(x, ε) to be the cone generated by
the set { ai | i ∈ I(x, ε) } ∪ {0}. The presence of {0} means that N(x, ε) = {0} if
I(x, ε) = ∅. The corresponding polar cone is the ε-tangent cone T (x, ε). Observe
that if ε = 0, then these are just the standard normal and tangent cones; that is,
N(x, 0) = N(x) and T (x, 0) = T (x).

Examples of ε-normal and ε-tangent cones are illustrated in Figure 2.1. The set
x + T (x, ε) approximates the feasible region near x, where “near” is with respect to
the value of ε. Note that if I(x, ε) = ∅, so that N(x, ε) = {0}, then T (x, ε) = Rn; in
other words, if the boundary is more than distance ε away, then the problem looks
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Fig. 2.1. The cones N(x, ε) and T (x, ε) for the values ε1, ε2, and ε3. Note that for this example,
as ε varies from ε1 to 0, there are only the three distinct pairs of cones illustrated (N(x, ε3) = {0}).

unconstrained in the ε-neighborhood of x, as can be seen in the third example in
Figure 2.1. Observe that one can proceed from x along any direction in T (x, ε) for
a distance of at least ε, and remain inside the feasible region; this is formalized in
Proposition 2.2. Overall, the number of distinct ε-normal cones (and consequently
the number of distinct ε-polar cones) is finite; see Proposition 2.3.

Proposition 2.2. If x ∈ Ω, and v ∈ T (x, ε) satisfies ‖ v ‖ ≤ ε, then x + v ∈ Ω.
Proof. Let x ∈ Ω, and v ∈ T (x, ε) with ‖ v ‖ ≤ ε. Since v ∈ T (x, ε) = (N(x, ε))

◦
,

aTi v ≤ 0 for all i ∈ I(x, ε). Thus, x+v satisfies all constraints with i ∈ I(x, ε) because

aTi (x + v) = aTi x + aTi v ≤ b + 0 = b.

Meanwhile, if i 	∈ I(x, ε), the face Ci where the ith constraint is binding is more than
distance ε away from x. Thus, x + v ∈ Ω.

Proposition 2.3. For all x ∈ Ω and ε > 0, there are at most 2m distinct sets
I(x, ε). Consequently, there are at most 2m distinct cones N(x, ε) and at most 2m

distinct cones T (x, ε).
Proof. Each I(xk, εk) is a subset of {1, . . . ,m}, of which there are exactly 2m

possible subsets, including the empty set. The remainder of the proof follows directly
from the definitions of N(x, ε) and T (x, ε).

2.3. Conditions on the search directions. We now state the conditions on
the sets of search directions for GSS for linearly constrained optimization.

At each iteration, a linearly constrained GSS method assembles Dk, the set of
search directions. We partition Dk into two subsets that play different roles in the
analysis:

Dk = Gk ∪Hk.

The set Gk is required to generate T (xk, εk) and is called the set of core directions.
The requirement that the set of search directions contain a set of generators for
T (xk, εk) (which is always Rn in the unconstrained case) is what led to the name
generating set search [15].

The (possibly empty) set Hk accommodates any remaining directions in Dk, the
presence of which may prove instrumental in efforts to accelerate the overall progress
of the search. For instance, using Hk = {ai : i ∈ I(xk, εk)} can be advantageous
computationally [17].



950 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

ε

N(x,ε)

T(x,ε)

Ω

x
ε

N(x,ε)

T(x,ε)

Ω

x
ε

N(x,ε)

T(x,ε)

Ω

x

Fig. 2.2. Condition 1 is needed to avoid a sequence of Gk’s for which κ(Gk) → 0.

Our focus here is on the conditions on Gk. The set Hk accommodates additional
directions suggested by heuristics to improve the progress of the search, but has little
effect on the analysis. The generating set for T (xk, εk) contained in Gk is crucial.

Condition 1. There exists a constant κmin > 0, independent of k, such
that for every k for which T (xk, εk) 	= {0}, the set Gk generates T (xk, εk)
and satisfies κ(Gk) ≥ κmin.

Even though there are only finitely many ε-tangent cones T (x, ε), the set of possible
generators for each cone is not necessarily unique, as seen in Figure 2.2. The lower
bound κmin from Condition 1 precludes a sequence of Gk’s for which κ(Gk) → 0. Such
a situation is depicted in Figure 2.2 for

G =

{( −1
0

)
,

(
1
0

)
,

( −1
−η

)}

with three choices of η > 0. If −∇f(x) = (0, −1)T , neither of the first two elements
of G are descent directions. Furthermore, since

κ(G) ≤ max
d∈G

−∇f(x)T d

‖∇f(x) ‖ ‖ d ‖ =
η√

1 + η2
< η,

the remaining element in G will be an increasingly poor descent direction if η → 0. A
nonzero lower bound on κ(G), as in Condition 1, will keep the angle between v and at
least one generator bounded away from 90◦; see [15, sections 2.2 and 3.4.1] for further
discussion.

A simple technique to ensure Condition 1 is satisfied is as follows. Let k2 > k1.
If I(xk2 , εk2) = I(xk1 , εk1), use the same generators for T (xk2 , εk2) as were used for
T (xk1

, εk1). Recall from Proposition 2.3 that there at most 2m distinct index sets
I(x, ε) and their corresponding ε-tangent cones T (x, ε). It then follows that there are
at most 2m distinct sets G if the same set of generators is always used to generate
a particular ε-tangent cone. Since by Proposition 2.1 each G 	= {0} has a strictly
positive value for κ(G), and since this technique ensures there are only finitely many
Gk’s, we can set κmin = min{κ(Gk) : T (xk, εk) 	= {0}}. Thus, Condition 1 is satisfied.

We have not yet indicated how to compute the generators for a given T (xk, εk)
so as to assemble Gk. If the working set { ai | i ∈ I(xk, εk) } is linearly indepen-
dent, then it is straightforward to calculate the generators of T (xk, εk) as described in
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[25, 19, 17]. If the set { ai | i ∈ I(xk, εk) } is linearly dependent (e.g., in the degen-
erate case), then it is also possible to calculate the generators as described in [17]. In
the latter case, the experience reported in [17] suggests that the worst-case computa-
tional complexity bounds do not indicate expected performance. For example, for one
problem illustrated in [17], the worst-case estimate indicates that more than 4× 1017

vectors need to be considered when, in fact, only one vector was needed and this one
vector was easily identified in less than one-seventh of a second on a conventional
workstation using Fukuda’s cddlib package [9].

Finally, all the core directions must be uniformly bounded; see Condition 2.

Condition 2. There exist βmax ≥ βmin > 0, independent of k, such that for
every k for which T (xk, εk) 	= {0}, the following holds:

βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk.

Condition 2 is easy to satisfy, say, by normalizing all search directions so that βmin =
βmax = 1. However, there may be situations where it makes sense to allow the
directions in Gk to accommodate scaling information. This poses no difficulties for
the analysis, so long as there are lower and upper bounds, independent of k, on the
norm of each d ∈ Gk.

3. Choosing the step lengths. Given a set of search directions, the length of
the step along each direction is dictated by the step-length control parameter Δk. In
the unconstrained case, the set of trial points at iteration k would be

{
xk + Δkd

(i)
k | i = 1, . . . , pk

}
,

where

Dk =
{
d
(1)
k , d

(2)
k , . . . , d

(pk)
k

}
.

In the constrained case, however, some of those trial points may be infeasible. Thus,
the trial points are instead defined by

{
xk + Δ̃

(i)
k d

(i)
k | i = 1, . . . , pk

}
,

where

Δ̃
(i)
k ∈ [0,Δk]

is chosen so that xk + Δ̃
(i)
k d

(i)
k ∈ Ω. The main requirement on choosing Δ̃

(i)
k is that a

full step is used if possible, as formally stated in the following condition.

Condition 3. If xk + Δkd
(i)
k ∈ Ω, then Δ̃

(i)
k = Δk.

The simplest formula for choosing Δ̃
(i)
k ∈ [0,Δk] that satisfies Condition 3 is

Δ̃
(i)
k =

{
Δk if xk + Δkd

(i)
k ∈ Ω,

0 otherwise.
(3.1)
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Fig. 3.1. The step-length control parameter Δk may lead to infeasible trial points. The effect
of using (3.1) is that infeasible points simply are not considered as candidates to replace xk.

This corresponds to a form of exact penalization (see [15, section 8.1]) since the effect

of (3.1) is to reject (by setting Δ̃
(i)
k = 0) any step Δkd

(i)
k that would generate an

infeasible trial point. Since the constraints are assumed to be explicit (i.e., A and b
are known), verifying the feasibility of a trial point is straightforward. This strategy
is illustrated in Figure 3.1.

More sophisticated strategies can be employed for choosing Δ̃
(i)
k when xk+Δkd

(i)
k

is infeasible. Since alternatives for choosing Δ̃
(i)
k depend on the globalization strategy,

we defer the discussion of further examples to section 4.

4. Globalization. Globalization of GSS refers to the conditions that are en-
forced to ensure that

lim inf
k→∞

Δk = 0.(4.1)

These conditions affect the decision of whether or not to accept a trial point as the
next iterate and how to update Δk. Globalization strategies for GSS are discussed
in detail in [15, section 3.7]. Here we review those features that are relevant to our
analysis of algorithms for the linearly constrained case.

In any GSS algorithm, xk is always the best feasible point discovered thus far;
i.e., f(xk) ≤ f(xj) for all j ≤ k. However, different conditions are imposed on how
much better a trial point must be to be accepted as the next iterate.

In general, for an iteration to be considered successful we require that

xk + Δ̃kdk ∈ Ω and f(xk + Δ̃kdk) < f(xk) − ρ(Δk)

for some dk ∈ Dk and Δ̃k ∈ [0,Δk].
(4.2)

The function ρ(·) is called the forcing function and must satisfy Condition 4.

Condition 4 (general requirements on the forcing function).
1. The function ρ(·) is a nonnegative continuous function on [0,+∞).
2. The function ρ(·) is o(t) as t ↓ 0; i.e., limt↓0 ρ(t) / t = 0.
3. The function ρ(·) is nondecreasing; i.e., ρ(t1) ≤ ρ(t2) if t1 ≤ t2.

Both ρ(Δ) ≡ 0 and ρ(Δ) = αΔp, where α > 0 and p > 1, satisfy Condition 4.
The first choice also requires globalization via a rational lattice, which is discussed in
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section 4.2. The second choice can be used with globalization via a sufficient decrease
condition, which is discussed in section 4.1.

In the case of a successful iteration (i.e., one that satisfies (4.2)), the next iterate
is defined by

xk+1 = xk + Δ̃kdk for k ∈ S.

(Recall from section 1.1 that the set of indices of all successful iterations is denoted
by S.) In addition, Δk is updated according to

Δk+1 = φkΔk, φk ≥ 1 for k ∈ S.

The parameter φk is called the expansion parameter.
For the kth iteration to be unsuccessful, it must be the case that

xk + Δkd 	∈ Ω or f(xk + Δkd) ≥ f(xk) − ρ(Δk) for every d ∈ Gk.(4.3)

When the iteration is unsuccessful, the best point is unchanged:

xk+1 = xk for k ∈ U .

(Recall from section 1.1 that the set of indices of all unsuccessful iterations is denoted
by U .) In addition, the step-length control parameter is reduced:

Δk+1 = θkΔk, θk ∈ (0, 1) for k ∈ U .

The parameter θk is called the contraction parameter.
There are intimate connections between choosing the φk or θk in the update for

Δk and guaranteeing that (4.1) holds. Further requirements depend on the particular
choice of globalization strategy, and so are given in sections 4.1 and 4.2.

4.1. Globalization via a sufficient decrease condition. In the context of
gradient-based nonlinear programming algorithms, the enforcement of a sufficient
decrease condition on the step is well established (e.g., [10, 28, 29], or see the discussion
in [15, section 2.2]). In the context of gradient-based methods, enforcing a sufficient
decrease condition ties the choice of the step-length control parameter to the expected
decrease, as estimated by the initial rate of decrease −∇f(xk)

T dk. In the context of
GSS methods, the underlying assumption is that the value of ∇f(xk) is unavailable—
which means that the types of sufficient decrease conditions often used with gradient-
based methods cannot be enforced. However, in [11] an alternative that uses the
step-length control parameter, rather than ∇f(xk), was introduced and analyzed in
the context of linesearch methods for unconstrained minimization. In [21, 22, 23, 24],
this basic concept was then extended to both unconstrained and constrained versions
of what we here refer to as GSS methods. We now review the essential features of
this approach.

Within the context of GSS methods for linearly constrained optimization, a suffi-
cient decrease globalization strategy requires the following of the forcing function ρ(·)
and the choice of the contraction parameter θk.

Condition 5 (the forcing function for sufficient decrease).
The forcing function ρ(·) is such that ρ(t) > 0 for t > 0.
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Fig. 4.1. Observe in the second illustration that globalization via a sufficient decrease condition
makes it possible to avoid infeasible trial points by simply stopping at the boundary of Ω.

Condition 6 (contracting Δk for sufficient decrease).
A constant θmax < 1 exists such that θk ≤ θmax for all k.

Full details are discussed in [15, section 3.7.1], but we include a few salient ob-
servations here. The requirements of Condition 5 are easily satisfied by choosing,
say, ρ(Δ) = 10−4Δ2, while the requirements of Condition 6 are easily satisfied by
choosing, say, θk = 1

2 for all k. The upper bound on the contraction factor θk en-
sures a predictable fraction of reduction on Δk at the conclusion of an unsuccessful
iteration.

If a sufficient decrease condition is being employed, then we can use an alternative

to the exact penalization strategy, given in (3.1), for choosing Δ̃
(i)
k when xk+Δkd

(i)
k 	∈

Ω: simply find the step to the nearest constraint from xk along d
(i)
k . This is a well-

known technique in nonlinear programming (see, for instance, [10, section 5.2] or [28,

section 15.4]). In other words, compute Δ̃
(i)
k as the maximum nonnegative feasible

step along d
(i)
k . This option is illustrated in Figure 4.1.

4.2. Globalization via a rational lattice. Traditionally, direct search meth-
ods have relied on simple, as opposed to sufficient, decrease when accepting a step [33].

In other words, it is enough for the step Δ̃
(i)
k d

(i)
k to satisfy f(xk + Δ̃

(i)
k d

(i)
k ) < f(xk).

The trade-off is that when the condition for accepting a step is relaxed to admit sim-
ple decrease, further restrictions are required on the types of steps that are allowed.
These restrictions are detailed in Conditions 7, 8, and 9.

Condition 7 (choosing the directions for the rational lattice).
Let G = ∪∞

k=0 Gk.
1. The set G is finite and so can be written as G = {g(1), . . . , g(p)}.
2. Every vector g ∈ G is of the form g ∈ Zn, where Z is the set of integers.
3. Every vector h ∈ Hk is of the form h ∈ Zn.
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Condition 8 (expanding or contracting Δk for the rational lattice).
1. The scalar τ is a fixed rational number strictly greater than 1.
2. For all k ∈ S, φk is of the form φk = τ �k , where �k ∈ {0, . . . , L}, L ≥ 0.
3. For all k ∈ U , θk is of the form θk = τmk , where mk ∈ {M, . . . ,−1},

M ≤ −1.

Condition 9 (choosing the steps for the rational lattice).

Δ̃
(i)
k satisfies either Δ̃

(i)
k = 0 or Δ̃

(i)
k = τ m̃

(i)
k Δk, where m̃

(i)
k ∈ {M̃, . . . , 0},

M̃ ≤ 0.

While the list of requirements in Conditions 7, 8, and 9 looks onerous, they can be
satisfied in a straightforward fashion. A discussion of the reasons for these conditions
can be found in [19, sections 3.4, 4, and 5]. (A detailed discussion of the rational
lattice globalization strategy for the unconstrained case can be found in [15, section
3.7.2].) Here we make only a few pertinent observations.

First, a critical consequence of Conditions 7 and 8 is that when these two con-
ditions are enforced, along with the exact penalization strategy in (3.1), Theorem
5.1 in [19] ensures that all iterates lie on a rational lattice. This fact plays a crucial
role in guaranteeing (4.1) when only simple decrease is enforced. Condition 9 is a
straightforward extension that preserves the fact that all the iterates lie on a rational
lattice while relaxing the exact penalization strategy in (3.1) (an example is shown in
Figure 4.2).

Obtaining a finite G to satisfy part 1 of Condition 7 can be done by following the
procedure outlined in section 2.3 (i.e., if I(xk2 , εk2) = I(xk1 , εk1) for k2 > k1, then use
the same generators for T (xk2 , εk2) as were used for T (xk1 , εk1)). To satisfy part 2, a
standard assumption in the context of simple decrease is that the linear constraints
are rational, i.e., A ∈ Qm×n, where Q denotes the set of rational numbers. By clearing
denominators, it is then possible—with some care—to obtain a set of integral vectors
to generate all possible ε-tangent cones; see [19, section 8] for further discussion. Part
3 is enforced directly.

In Condition 8, the usual choice of τ is 2. The parameter φk typically is chosen to
be 1 so that �k = 0 for all k, satisfying the requirement placed on φk in Condition 8.
Usually θk is chosen to be 1

2 so that mk = −1 for all k, satisfying the requirement
placed on θk in Condition 8. The fact that τ−1 is the largest possible choice of θk
obviates the need to explicitly bound θk from above, as was required in Condition 6
for sufficient decrease.

Condition 9 says that it is possible to choose a partial step along a given direction
so long as the trial point remains on a rational lattice. One strategy is illustrated
in Figure 4.2. Starting with the situation illustrated on the left, along direction

d(1), Δ̃
(1)
k = 0.5Δk yields the feasible trial step Δ̃

(1)
k d(1) while along direction d(3),

Δ̃
(3)
k = 0.25Δk yields the feasible trial step Δ̃

(3)
k d(3), as illustrated on the right. These

choices for Δ̃
(1)
k and Δ̃

(3)
k correspond to choosing m

(1)
k = −1 and m

(3)
k = −2, with

τ = 2 and M̃ = −2.
The general strategy is to find the largest Δ̃

(i)
k (by finding the largest m

(i)
k ) such

that xk + Δ̃
(i)
k d

(i)
k ∈ Ω while satisfying Condition 9. To do so, either reduce Δk by a
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Fig. 4.2. Globalization via a rational lattice means that the trial points lie on the rational lattice
that exists as a consequence of Conditions 7–9. For this example note that while the two reduced
steps are near the boundary, the requirement that they remain on the rational lattice means that
they may not be on the boundary.

factor of 1/τ until

xk + τm
(i)
k Δkd

(i)
k ∈ Ω with m

(i)
k ≥ M̃(4.4)

or set Δ̃
(i)
k = 0 if it is not possible to satisfy (4.4) (for instance, when xk is on the

boundary of the feasible region then any step along d
(i)
k would be infeasible).

5. GSS algorithms for linearly constrained problems. We now formally
state two GSS algorithms for solving linearly constrained optimization problems. The
fundamental requirement for both algorithms is that at every iteration k, the set
of search directions Dk must include a set of generators Gk for the ε-normal cone
T (xk, εk)—hence the name generating set search methods. The primary requirements
on the GSS methods presented here are that they satisfy Conditions 1, 2, 3, and 4.
The differences in the two versions given depend on the type of globalization that is
used: sufficient decrease in Algorithm 5.1 versus simple decrease in Algorithm 5.2.
Sufficient decrease requires Conditions 5 and 6. Simple decrease admits the choice
ρ(·) ≡ 0, but requires Conditions 7, 8, and 9 in lieu of Conditions 5 and 6.

New in the statements of Algorithms 5.1 and 5.2, and to the analysis that follows,
is the way in which εk is defined, which has bearing on the construction of the critical
set Gk ⊆ Dk. Here we set εk = min{εmax, βmaxΔk}. This selection of εk differs from
that used in either [19] or [24]. Specifically, in [19] and Algorithm 2 of [24]—as well
as earlier in [25], in a slightly restricted form—Gk is required to contain generators
for T (xk, ε) for all ε in the interval [0, εmax], with εmax > 0. This means that Gk may
need to contain generators for multiple cones rather than a single cone. Since Δk can
be reduced only at the conclusion of an unsuccessful iteration, and an unsuccessful
iteration requires the verification of (4.3), there is practical incentive to try and keep
the cardinality of Gk manageable when the cost of computing f(x) for x ∈ Ω is
appreciable. Thus, Algorithm 1 in [24] first introduced the potential for a smaller set
of search directions: the set of search directions must exactly generate T (xk, εk)—and
only T (xk, εk). Using our notation, this means that Hk = ∅ for all k. Furthermore,
for Algorithm 1 in [24], εk is simply a parameter decreased at unsuccessful iterations
as opposed to the particular choice of εk given here.

Our requirement that the search directions include generators for T (xk, εk), with
εk = min{εmax, βmaxΔk}, is a compromise. On the one hand, it may significantly
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Algorithm 5.1. Linearly constrained GSS using a sufficient

decrease globalization strategy

Initialization.

Let x0 ∈ Ω be the initial guess.

Let Δtol > 0 be the tolerance used to test for convergence.

Let Δ0 > Δtol be the initial value of the step-length control parameter.

Let εmax > βmaxΔtol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Let ρ(·) be a forcing function satisfying Conditions 4 and 5.

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax, βmaxΔk}. Choose a set of search directions
Dk = Gk ∪Hk satisfying Conditions 1 and 2.

Step 2. If there exists dk ∈ Dk and a corresponding Δ̃k ∈ [0,Δk] satisfying
Condition 3 such that xk + Δ̃kdk ∈ Ω and

f(xk + Δ̃kdk) < f(xk) − ρ(Δk),

then:

– Set xk+1 = xk + Δ̃kdk.

– Set Δk+1 = φkΔk for any choice of φk ≥ 1.

Step 3. Otherwise, for every d ∈ Gk, either xk + Δkd 	∈ Ω or

f(xk + Δkd) ≥ f(xk) − ρ(Δk).

In this case:

– Set xk+1 = xk (no change).

– Set Δk+1 = θkΔk for some choice θk ∈ (0, 1)
satisfying Condition 6.

If Δk+1 < Δtol, then terminate.

Fig. 5.1. Linearly constrained GSS using a sufficient decrease globalization strategy.

decrease the number of directions in Gk over that needed when Gk is required to
contain generators for T (xk, ε) for all ε in the interval [0, εmax]. On the other hand, it
allows Hk 	= ∅—the set of search directions can be augmented in an effort to accelerate
the search—without adversely affecting the convergence guarantees for the algorithm.

Yoking the value of εk to the value of Δk has geometrical motivations. Once Δk

is small enough, so that εk = βmaxΔk, full steps along directions in Gk will be feasible,
as Figure 2.1 demonstrates.

There is an intuitive practical appeal to allowing—while not requiring—Dk to
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Algorithm 5.2. Linearly constrained GSS using a rational

lattice globalization strategy

Initialization.

Let x0 ∈ Ω be the initial guess.

Let Δtol > 0 be the tolerance used to test for convergence.

Let Δ0 > Δtol be the initial value of the step-length control parameter.

Let εmax > βmaxΔtol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Let ρ(·) be a forcing function satisfying Condition 4, e.g., ρ(·) ≡ 0 is typical.

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax, βmaxΔk}. Choose a set of search directions
Dk = Gk ∪Hk satisfying Conditions 1, 2, and 7.

Step 2. If there exists dk ∈ Dk and a corresponding Δ̃k ∈ [0,Δk] satisfying
Conditions 3 and 9 such that xk + Δ̃kdk ∈ Ω and

f(xk + Δ̃kdk) < f(xk) − ρ(Δk),

then:

– Set xk+1 = xk + Δ̃kdk.

– Set Δk+1 = φkΔk for a choice of φk ≥ 1
satisfying Condition 8.

Step 3. Otherwise, for every d ∈ Gk, either xk + Δkd 	∈ Ω or

f(xk + Δkd) ≥ f(xk) − ρ(Δk).

In this case:

– Set xk+1 = xk (no change).

– Set Δk+1 = θkΔk for some choice θk ∈ (0, 1)
satisfying Condition 8.

If Δk+1 < Δtol, then terminate.

Fig. 5.2. Linearly constrained GSS using a rational lattice globalization strategy.

include more search directions. Note that if T (xk, εk) 	= {0}, then the directions
in Gk will move the search along directions that are in some sense “parallel” (the
situation is more complicated for n > 2) to the faces of the polyhedron that have
been identified by the working set. This is best seen in the illustration on the left in
Figure 2.1. Intuitively, it makes sense to also allow the search to move toward the
faces of the polyhedron that have been identified by the working set—particularly
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when the solution lies on the boundary of the feasible region. Such intuition is borne
out by the numerical results reported in [17].

Before proceeding, we note a technical difference between the presentation of the
algorithms in Algorithms 5.1 and 5.2 and what is assumed for the analysis in section 6.
In practice, GSS algorithms terminate when the step-length control parameter Δk falls
below a given threshold Δtol > 0. Because this is important to any implementation,
we have included it in the statement of the algorithm. In Theorems 6.3, 6.4, and 6.5,
however, we assume that the iterations continue ad infinitum (i.e., in the context of
the analysis, the reader should assume Δtol = 0).

5.1. GSS using a sufficient decrease condition. A linearly constrained GSS
algorithm based on a sufficient decrease globalization strategy is presented in Algo-
rithm 5.1. Using a sufficient decrease globalization strategy, as outlined in section
4.1, requires that we enforce two particular conditions. Condition 5 ensures that
ρ(Δk) = 0 only when Δk = 0. Condition 6 ensures that there is sufficient reduction
on Δk at unsuccessful iterations.

The only assumption on f necessary to show that some subsequence of {Δk}
converges to zero is that f be bounded below in the feasible region.

Theorem 5.1 (see Theorem 3.4 of [15]). Suppose f is bounded below on Ω. Then
for a linearly constrained GSS method using a sufficient decrease globalization strategy
satisfying Conditions 4, 5, and 6 (as outlined in Algorithm 5.1), lim infk→∞ Δk = 0.

5.2. GSS using a rational lattice. A linearly constrained GSS algorithm
based on a rational lattice globalization strategy is presented in Algorithm 5.2. The
choice ρ(·) ≡ 0 is standard for the rational lattice globalization strategy, which means
only simple decrease, i.e., f(xk + Δ̃kdk) < f(xk), is required. We note, however, that
a sufficient decrease condition may be employed in conjunction with a rational lattice
globalization strategy; see [15, section 3.7.2]. The choice ρ(·) ≡ 0 also means that
Condition 4 is satisfied automatically. The trade-off for using simple decrease is that
additional conditions must be imposed on the choice of admissible Dk (Condition 7),
φk and θk (Condition 8), and Δ̃k (Condition 9).

Using a rational lattice globalization strategy, to show that some subsequence of
the step-length control parameters goes to zero, the only assumption placed on f is
that the set F = { x ∈ Ω | f(x) ≤ f(x0) } be bounded. This is a stronger condition
on f than is needed when using a sufficient decrease globalization strategy, where all
that is required is that f be bounded below. The analysis for the rational lattice
globalization strategy requires the sequence {xk} to remain in a bounded set so as
to ensure that there is a finite number of lattice points to consider. We could adopt
this weaker assumption, though it is not clear how it would be enforced in practice.
Instead, assuming that F is bounded guarantees this requirement.

Theorem 5.2 (see Theorem 6.5 of [19]). Assume that F = {x∈Ω | f(x)≤ f(x0)}
is bounded and that A ∈ Qm×n, where Q denotes the set of rational numbers. Then
for a linearly constrained GSS method using a rational lattice globalization strategy
satisfying Conditions 4, 7, 8, and 9 (as outlined in Algorithm 5.2), lim infk→∞ Δk =
0.

6. Stationarity results. At unsuccessful iterations of the linearly constrained
GSS methods outlined in Algorithms 5.1 and 5.2, we can bound the measure of sta-
tionarity χ(xk) in terms of Δk. To do so, we make the following assumptions.



960 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Assumption 6.1. The set F = { x ∈ Ω | f(x) ≤ f(x0) } is bounded.

Assumption 6.2. The gradient of f is Lipschitz continuous with constant
M on Ω.

If Assumptions 6.1 and 6.2 hold, then there exists γ > 0 such that for all x ∈ F ,

‖∇f(x) ‖ < γ.(6.1)

We then have the following results for the algorithms in Algorithms 5.1 and 5.2.
Recall from section 2.1 that given a convex cone K and any vector v, we denote the
projection of v onto K by vK .

Theorem 6.3. Suppose that Assumption 6.2 holds. Consider the linearly con-
strained GSS algorithms given in Algorithms 5.1 and 5.2, both of which satisfy Con-
ditions 1, 2, and 3. If k ∈ U and εk satisfies εk = βmaxΔk, then

‖ [−∇f(xk)]T (xk,εk) ‖ ≤ 1

κmin

(
MΔkβmax +

ρ(Δk)

Δkβmin

)
.(6.2)

Here, κmin is from Condition 1, M is from Assumption 6.2, and βmax and βmin are
from Condition 2.

Proof. Clearly, we need only consider the case when [−∇f(xk)]T (xk,εk) 	= 0. Con-
dition 1 guarantees a set Gk that generates T (xk, εk). By (2.1) (with K = T (xk, εk)

and v = −∇f(xk)) there exists some d̂ ∈ Gk such that

κ(Gk) ‖ [−∇f(xk)]T (xk,εk) ‖ ‖ d̂ ‖ ≤ −∇f(xk)
T d̂.(6.3)

Condition 3 and the fact that iteration k is unsuccessful tell us that

f(xk + Δkd) ≥ f(xk) − ρ(Δk) for all d ∈ Gk for which xk + Δkd ∈ Ω.

Condition 2 ensures that for all d ∈ Gk, ‖Δkd ‖ ≤ Δkβmax and, by assumption,
Δkβmax = εk, so we have ‖Δkd ‖ ≤ εk for all d ∈ Gk. Proposition 2.2 then assures us
that xk + Δkd ∈ Ω for all d ∈ Gk. Thus,

f(xk + Δkd) − f(xk) + ρ(Δk) ≥ 0 for all d ∈ Gk.(6.4)

Meanwhile, since the gradient of f is assumed to be continuous (Assumption 6.2),
we can apply the mean value theorem to obtain, for some αk ∈ (0, 1),

f(xk + Δkd) − f(xk) = Δk∇f(xk + αkΔkd)
T d for all d ∈ Gk.

Putting this together with (6.4),

0 ≤ Δk∇f(xk + αkΔkd)
T d + ρ(Δk) for all d ∈ Gk.

Dividing through by Δk and subtracting ∇f(xk)
T d from both sides yields

−∇f(xk)
T d ≤ (∇f(xk + αkΔkd) −∇f(xk))

T
d + ρ(Δk)/Δk for all d ∈ Gk.



GSS FOR LINEARLY CONSTRAINED OPTIMIZATION 961

Since ∇f(x) is Lipschitz continuous (Assumption 6.2) and 0 < αk < 1, we obtain

−∇f(xk)
T d ≤ MΔk‖ d ‖2 + ρ(Δk)/Δk for all d ∈ Gk.(6.5)

Since (6.5) holds for all d ∈ Gk, (6.3) tells us that for some d̂ ∈ Gk,

κ(Gk) ‖ [−∇f(xk)]T (xk,εk) ‖ ≤ MΔk‖ d̂ ‖ +
ρ(Δk)

Δk ‖ d̂ ‖ .

Using the bounds on ‖ d̂ ‖ in Condition 2,

‖ [−∇f(xk)]T (xk,εk) ‖ ≤ 1

κ(Gk)

(
MΔkβmax +

ρ(Δk)

Δkβmin

)
.

The theorem then follows from the fact that κ(Gk) ≥ κmin (Condition 1).
Theorem 6.4 relates the measure of stationarity χ(xk) to the step-length control

parameter Δk. Before we proceed, we define the following constant (recall that κ(·)
is defined in (2.1)):

νmin = min
{
κ(A) : A = ∪i∈I(x,ε){ai}, x ∈ Ω, ε ≥ 0, I(x, ε) 	= ∅} > 0.(6.6)

We know that νmin > 0 because there are no more than 2m possibilities for A.
Theorem 6.4. Suppose that Assumptions 6.1 and 6.2 hold. Consider the linearly

constrained GSS algorithms given in Algorithms 5.1 and 5.2, both of which satisfy
Conditions 1, 2, and 3. If k ∈ U and εk = βmaxΔk, then

χ(xk) ≤
(

M

κmin
+

γ

νmin

)
Δk βmax +

1

κmin βmin

ρ(Δk)

Δk
.(6.7)

Here, κmin is from Condition 1, νmin is from (6.6), M is from Assumption 6.2, γ is
from (6.1), and βmax and βmin are from Condition 2.

Proof. Since εk = Δkβmax, Proposition B.2 tells us that

χ(xk) ≤ ‖ [−∇f(xk)]T (xk,εk) ‖ +
Δkβmax

νmin
‖ [−∇f(xk)]N(xk,εk) ‖.

Furthermore, the bound on ‖ [−∇f(xk)]T (xk,εk) ‖ from Theorem 6.3 holds. The pro-
jection onto convex sets is contractive, so ‖ [−∇f(xk)]N(xk,εk) ‖ ≤ ‖∇f(xk) ‖. Un-
der Assumptions 6.1 and 6.2, (6.1) holds, so ‖ [−∇f(xk)]N(xk,εk) ‖ ≤ γ. The result
follows.

If we choose either ρ(Δ) ≡ 0 or ρ(Δ) = αΔp with α > 0 and p ≥ 2, then we
obtain an estimate of the form χ(xk) = O(Δk).

The constants M , γ, and νmin in (6.7) are properties of the linearly constrained
optimization problem. The remaining quantities—the bounds on the lengths of the
search directions βmin and βmax, as well as κmin—are under the control of the algo-
rithm.

Before continuing, we observe that the Lipschitz assumption (Assumption 6.2)
can be relaxed. A similar bound can be obtained assuming only continuous differ-
entiability of f . Let ω denote the following modulus of continuity of ∇f(x): given
x ∈ Ω and r > 0,

ω(x, r) = max {‖∇f(y) −∇f(x) ‖ | y ∈ Ω, ‖ y − x ‖ ≤ r} .
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Then the proof of Theorem 6.4 yields the bound

χ(xk) ≤ 1

κmin
ω(xk,Δkβmax) +

γ

νmin
Δk βmax +

1

κmin βmin

ρ(Δk)

Δk
.

Returning to Theorem 6.4, if we recall from Theorems 5.1 and 5.2 that the step-
length control parameter Δk is manipulated explicitly by GSS methods in a way that
ensures lim infk→∞ Δk = 0, then an immediate corollary is the following first-order
convergence result.

Theorem 6.5. Suppose that Assumptions 6.1 and 6.2 hold. Consider either
(i) the linearly constrained GSS algorithm in Algorithm 5.1, which satisfies Con-

ditions 1, 2, 3, 4, 5, and 6, or
(ii) the linearly constrained GSS algorithm in Algorithm 5.2, which satisfies Con-

ditions 1, 2, 3, 4, 7, 8, and 9, with the additional assumption that A is
rational.

For both algorithms we have lim infk→+∞ χ(xk) = 0.

7. Using Δk to terminate GSS methods after unsuccessful iterations.
We now present some numerical illustrations of the practical implications of Theo-
rem 6.4. We show that Δk can be used as a reasonable measure of stationarity when
implementing GSS methods to solve linearly constrained minimization problems. The
results in section 6 serve as a justification for terminating the search when Δk < Δtol.

To demonstrate that Δk is a reasonable measure of stationarity, we show the fol-
lowing results from experiments using an implementation of a GSS method for solving
linearly constrained optimization problems (a thorough discussion of the implemen-
tation, as well as further numerical results, can be found in [17]).

The first test problem is the following quadratic program (QP) for n = 8:

minimize f(x) =
∑n

j=1 j
2x2

j

subject to 0 ≤ x ≤ 1,∑n
j=1 xj ≥ 1,

(7.1)

where xj is the jth component of the vector x. The last constraint is binding at the
solution. The second test problem is posed on a pyramid in R3:

minimize f(x) =
∑3

j=1[(4 − j)2(xj − cj)
2 − xj ]

subject to x3 ≥ 0,

x1 + x2 + x3 ≤ 1,
x1 − x2 + x3 ≤ 1,

−x1 + x2 + x3 ≤ 1,
−x1 − x2 + x3 ≤ 1,

(7.2)

with c = (0.01, 0.01, 0.98)T . Again, xj and cj are the jth components of the vectors x
and j, respectively. The solution is at c, which is near the apex of the pyramid. The
algorithm actually visits the apex, which is a degenerate vertex insofar as there are
four constraints in three variables that meet there.

These two problems were solved using the implementation of Algorithm 5.1 re-
ported in [17]. The forcing function was ρ(Δ) = 10−4Δ2. The set of search directions
Dk contained both the set Gk, the generators for the ε-tangent cone T (xk, εk), as well
as the set Hk, which contained the nonzero generators for the ε-normal cone N(xk, εk).
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All search directions were normalized, so βmin = βmax = 1. For these choices, Theo-
rem 6.4 says that χ(xk) = O(Δk) at unsuccessful iterations when Δk ≤ εmax.

We used θk = 1
2 and φk = 1 for all k. After any unsuccessful iteration, we

recorded the value of Δk and computed the value of χ(xk). These values are reported
in Table 7.1 for unsuccessful iterations with εk = Δkβmax.

Table 7.1

GSS runs showing decrease in Δk versus the value of χ(xk) at unsuccessful iterations.

Δk χ(xk)

0.100000000000 0.762038045731
0.050000000000 0.719781449029
0.025000000000 0.683858024464
0.012500000000 0.522963684221
0.006250000000 0.147769116216
0.003125000000 0.009094010555
0.001562500000 0.009042346694
0.000781250000 0.005424114678
0.000390625000 0.002291442563
0.000195312500 0.000803137090
0.000097656250 0.000616656194
0.000048828125 0.000583197890
0.000024414063 0.000134935864
0.000012207031 0.000214535279
0.000006103516 0.000122058457
0.000003051758 0.000033834262
0.000001525879 0.000014798430
0.000000762939 0.000002976275
0.000000381470 0.000003506102
0.000000190735 0.000001047463

(a) The QP in (7.1).

Δk χ(xk)

0.100000000000 0.009296268053
0.050000000000 0.009296268053
0.025000000000 0.068321041838
0.012500000000 0.001889009252
0.006250000000 0.000193017831
0.003125000000 0.000193017831
0.001562500000 0.003786874320
0.000781250000 0.003080612089
0.000390625000 0.000016499610
0.000195312500 0.000016499610
0.000097656250 0.000004481178
0.000048828125 0.000004481178
0.000024414063 0.000001550420
0.000012207031 0.000007616742
0.000006103516 0.000007616742
0.000003051758 0.000001501552
0.000001525879 0.000000807763
0.000000762939 0.000000008203
0.000000381470 0.000000008203
0.000000190735 0.000000008203

(b) The QP in (7.2).

The point of the results reported in Table 7.1 is not to demand close scrutiny
of each entry but rather to demonstrate the trend in the quantities measured. We
clearly see the linear relationship between Δk and χ(xk) that Theorem 6.4 tells us to
expect. These results are consistent with findings for the unconstrained case [8] as
well as with a long-standing recommendation for using Δk as a stopping criterion for
direct search methods (see [14, 3, 32]).

One practical benefit of using Δk as a measure of stationarity is that it is already
present in GSS algorithms; no additional computation is required.

We close with the observation that the effectiveness of Δk as a measure of station-
arity clearly depends on the value of the constants in the bound in (6.7). For instance,
if f is highly nonlinear, so that the Lipschitz constant M is large, then using Δk to
estimate χ(xk) might be misleading. While GSS methods cannot control M , γ, or
νmin, which depend on the linearly constrained optimization problem, a careful imple-
mentation of GSS methods for solving linearly constrained optimization problems can
control the remaining constants in (6.7). Thus a careful implementation can ensure
that Δk is a useful measure of stationarity except when f is highly nonlinear (i.e., M
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is large with respect to ‖∇f ‖) or A is ill-conditioned.

8. Conclusions. The results we have presented are useful in several ways. First,
we present a new prescription for how the search directions should conform to the
boundary near an iterate xk. Theorems 6.3 and 6.4 bring out many of the elements
common to the approaches described in [18, 19] and [23, 24]. Although the globaliza-
tion approaches that ensure lim infk→∞ Δk = 0 differ, the same analysis shows that
for both classes of algorithms,

χ(xk) = O(Δk).

This result does not depend on the method of globalization.
Second, the results presented here give theoretical support for terminating GSS

methods for linearly constrained optimization when Δk falls below some tolerance.
Under the assumptions of Theorem 6.4, at the subsequence of unsuccessful iterations
(k ∈ U) we have χ(xk) = O(Δk) as Δk → 0. At the same time, Theorem 6.4 also sug-
gests that this stopping criterion may be unsuitable if the objective is highly nonlinear,
making clear the need for direct search methods, like all optimization algorithms, to
account for scaling.

Theorem 6.3 underlies the use of linearly constrained GSS methods in the aug-
mented Lagrangian framework given in [5]. The latter proceeds by successive ap-
proximate minimization of an augmented Lagrangian. The stopping criterion in the
subproblems involves the norm of the projection onto T (xk, ωk) of the negative gra-
dient of the augmented Lagrangian, for a parameter ωk ↓ 0. In the direct search
setting the gradient is unavailable. However, Theorem 6.3 enables us to use Δk as an
alternative measure of stationarity in the subproblems. Details appear in [16].

Appendix A. Criticality measure for first-order constrained stationar-
ity. Here we discuss χ(x) and ‖ q(x) ‖ in more detail. Because these measures are not
novel, we have relegated their discussion to an appendix.

For x ∈ Ω, progress toward a KKT point of (1.1) is measured by

χ(x) ≡ max
x+w∈Ω
‖w ‖≤1

−∇f(x)Tw.(A.1)

This measure was originally proposed in [5] and is discussed at length in section 12.1.4
of [6], where the following properties are noted:

1. χ(x) is continuous,
2. χ(x) ≥ 0, and
3. χ(x) = 0 if and only if x is a KKT point for (1.1).

Showing that χ(xk) → 0 as k → ∞ for a subsequence of iterates k constitutes a global
first-order stationarity result.

To help better understand this measure, the w’s that define χ(x) in (A.1) are
illustrated in Figure A.1 for several choices of −∇f(x). Conn, Gould, and Toint
[6] observe that χ(x) can be interpreted as the progress that can be made on a
first-order model at x in a ball of radius unity with the constraint of preserving
feasibility. They go on to observe that χ(x) is a direct generalization of ‖∇f(x) ‖; in
fact, χ(x) = ‖∇f(x) ‖ whenever Ω = Rn or x−∇f(x) ∈ Ω.

The work in [19, 20] used the measure q(x) defined in (1.5) (this quantity appears
in [6] as equation (12.1.19)), but the resulting stationarity result is unsatisfying in the
case of general linear constraints. The quantity χ(x) turns out to be easier to work
with than q(x). The latter involves a projection onto the feasible polyhedron, and if
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Fig. A.1. How the w in (A.1) varies with −∇f(x) when x−∇f(x) �∈ Ω.

the constraints binding at the projection do not correspond to the constraints near x,
technical difficulties ensue in relating q(x) to the geometry of the feasible region near
x. This is not the case with χ(x).

Appendix B. Geometric results on cones and polyhedra. Here we present
geometrical results having to do with our use of χ(·) as a measure of stationarity.

The first proposition says that if one can move from x to x+v and remain feasible,
then v cannot be too outward-pointing with respect to the constraints near x. Recall
from section 2.1 that given a convex cone K and any vector v, there is a unique closest
point of K to v, the projection of v onto K, which we denote by vK . Thus vN(x,ε) is
the projection of v onto the ε-normal cone N(x, ε) while vT (x,ε) is the projection of v
onto the ε-tangent cone T (x, ε).

Proposition B.1. If x ∈ Ω and x + v ∈ Ω, then for any ε ≥ 0, ‖ vN(x,ε) ‖ ≤
ε/νmin, where νmin is the constant from (6.6).

Proof. Let N = N(x, ε). The result is immediate if vN = 0, so we need
only consider the case when vN 	= 0. Recall that N is generated by the outward-
pointing normals to the binding constraints within distance ε of x; thus, the set
A = { ai | i ∈ I(x, ε) } generates N . A simple calculation shows that the distance
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from x to
{
y | aTi y = bi

}
is (bi − aTi x)/‖ ai ‖, so it follows that

bi − aTi x

‖ ai ‖ ≤ ε for all i ∈ I(x, ε).

Meanwhile, since x + v ∈ Ω, we have

aTi x + aTi v ≤ bi for all i.

The preceding two relations then lead to

aTi v ≤ bi − aTi x ≤ ε ‖ ai ‖ for all i ∈ I(x, ε).

Since N is generated by A ⊆ A = {a1, . . . , am} and vN 	= 0, by (2.1) and (6.6),

νmin ‖ vN ‖ ≤ max
i∈I(x,ε)

vTai
‖ ai ‖ ≤ max

i∈I(x,ε)

ε ‖ ai ‖
‖ ai ‖ = ε.

For x ∈ Ω and v ∈ Rn, define

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v.(B.1)

Note from (A.1) that χ(x) = χ̂(x;−∇f(x)). We use v in (B.1) to emphasize that the
following results are purely geometric facts about cones and polyhedra.

The following proposition relates χ̂(x; v) to the projection of v onto the cones
T (x, ε) and N(x, ε). Roughly speaking, it says that if ε > 0 is small, so that we are
only looking at a portion of the boundary very near x, then the projection of v onto
T (x, ε) (i.e., the portion of v pointing into the interior of the feasible region) cannot
be small unless χ̂(x; v) is also small.

Proposition B.2. If x ∈ Ω, then for all ε ≥ 0,

χ̂(x; v) ≤ ‖ vT (x,ε) ‖ +
ε

νmin
‖ vN(x,ε) ‖,

where νmin is the constant from (6.6).
Proof. Let N = N(x, ε) and T = T (x, ε). Writing v in terms of its polar decom-

position, v = vN + vT , we obtain

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v ≤ max
x+w∈Ω
‖w ‖≤1

wT vT + max
x+w∈Ω
‖w ‖≤1

wT vN .

For the first term on the right-hand side we have

max
x+w∈Ω
‖w ‖≤1

wT vT ≤ ‖ vT ‖.

Meanwhile, for any w we have

wT vN = (wT + wN )T vN ≤ wT
NvN

since wT
T vN ≤ 0. Thus,

max
x+w∈Ω
‖w ‖≤1

wT vN ≤ max
x+w∈Ω
‖w ‖≤1

‖wN ‖ ‖ vN ‖.
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However, since x + w ∈ Ω, Proposition B.1 tells us that

‖wN ‖ ≤ ε

νmin
.

Therefore,

χ̂(x; v) ≤ ‖ vT ‖ +
ε

νmin
‖ vN ‖.
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